3D vat photopolymerization printing of hydrophilic silicone-based microfluidic devices and the effect of cellulose nanocrystals as additives for improved printing accuracy

被引:2
|
作者
Wong, Li Yan [1 ,2 ]
Ganguly, Sayan [1 ,2 ]
Tang, Xiaowu [1 ,2 ,3 ,4 ]
机构
[1] Univ Waterloo, Waterloo Inst Nanotechnol WIN, Dept Chem, Waterloo, ON, Canada
[2] Ctr Eye & Vis Res CEVR, 17W Hong Kong Sci Pk, Hong Kong, Peoples R China
[3] Univ Waterloo, Dept Chem, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Waterloo Inst Nanotechnol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Microfluidics; Hydrophilic silicone; Cellulose nanocrystal; Organic solvent-resistant; Vat photopolymerization; SOLVENT-RESISTANT; POLYACRYLAMIDE; LIGHT; DEGRADATION;
D O I
10.1016/j.addma.2024.104177
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The lack of an ideal silicone-based ink material with optimal printability has significantly limited the potential to fabricate silicone-based microfluidic devices via 3D vat photopolymerization (VPP) printing. Oftentimes, photoabsorbers are incorporated into the ink material for better control of the photocuring depth in order to avoid excessive curing of unwanted parts. However, the search for a suitable photoabsorber without staining the ink material remains challenging due to the need to retain the clear interface in the final printed product. Herein, we present the fabrication of highly precise and transparent microfluidic devices using hydrophilic silicone-based ink via 3D VPP printing upon photocuring depth adjustment with cellulose nanocrystals (CNC). With the optimal CNC content, the ink material demonstrates enhanced printing accuracy with highly precise replication of channel patterns consisting of near zero deviation in width dimension down to 100 mu m. Moreover, the addition of optimal CNC content exhibits no distinct final color and has no negative impact on the pre-gel viscosity and the gel point of the developed ink material. Moving on, the printed devices exhibit excellent fluid manipulation with various solvents for up to 24 hours, with incubation temperature up to 100 degrees C for 5 hours, and with a continuous flow rate up to 20 mL/min. The sustainable hydrophilicity, good organic solvent resistance, and excellent biocompatibility properties of the printed material further eliminate the need for additional surface modification to suit its application with either organic solvents or biological cells. To the best of our knowledge, the approach to tuning the photocuring depth of ink material with CNC is not widely reported. Besides, the successful fabrication of a highly detailed, neutral-colored, and highly functional hydrophilic silicone-based microfluidic device via 3D VPP printing upon the incorporation of CNC introduces a new avenue in terms of printing material and fabrication method for the mass production of microfluidic devices.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] 3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review
    Enbergs, Simon
    Spinnen, Jacob
    Dehne, Tilo
    Sittinger, Michael
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2023, 2023
  • [22] 3D printing-based microfluidic devices in fabric
    Switalla, Ander
    Wentland, Lael
    Fu, Elain
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2023, 33 (02)
  • [23] 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications
    Khalid, Muhammad Yasir
    Arif, Zia Ullah
    Noroozi, Reza
    Hossain, Mokarram
    Ramakrishna, Seeram
    Umer, Rehan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 251
  • [24] Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications
    Timofticiuc, Iosif-Aliodor
    Calinescu, Octavian
    Iftime, Adrian
    Dragosloveanu, Serban
    Caruntu, Ana
    Scheau, Andreea-Elena
    Badarau, Ioana Anca
    Didilescu, Andreea Cristiana
    Caruntu, Constantin
    Scheau, Cristian
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (01)
  • [25] Vat photopolymerization 3D printing of alumina ceramics with low sintering temperature
    Wang, Rong
    Cui, Yichen
    Ye, Haitao
    Cheng, Jianxiang
    Zhang, Han
    Zhu, Pengfei
    Tao, Ran
    Ge, Qi
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 42434 - 42443
  • [26] Vat Photopolymerization 3D Printing of Hydrogels with Re-Adjustable Swelling
    Liz-Basteiro, Pedro
    Reviriego, Felipe
    Martinez-Campos, Enrique
    Reinecke, Helmut
    Elvira, Carlos
    Rodriguez-Hernandez, Juan
    Gallardo, Alberto
    GELS, 2023, 9 (08)
  • [27] Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies
    Zare, Mina
    Ghomi, Erfan Rezvani
    Venkatraman, Prabhuraj D.
    Ramakrishna, Seeram
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (38)
  • [28] Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications
    Shah, Mussadiq
    Ullah, Abid
    Azher, Kashif
    Rehman, Asif Ur
    Juan, Wang
    Akturk, Nizami
    Tufekci, Celal Sami
    Salamci, Metin U.
    RSC ADVANCES, 2023, 13 (02) : 1456 - 1496
  • [29] Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications
    Graca, Angelica
    Bom, Sara
    Martins, Ana M.
    Ribeiro, Helena M.
    Marto, Joana
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 19 (04)
  • [30] Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications
    Angélica Gra?a
    Sara Bom
    Ana M. Martins
    Helena M. Ribeiro
    Joana Marto
    Asian Journal of Pharmaceutical Sciences, 2024, 19 (04) : 3 - 21