Nonparametric estimator of the tail dependence coefficient: balancing bias and variance

被引:0
|
作者
Garcin, Matthieu [1 ]
Nicolas, Maxime L. D. [2 ]
机构
[1] Leonard Vinci Pole Univ, Res Ctr, F-92916 Paris, La Defense, France
[2] Univ Paris I Pantheon Sorbonne, Maison Sci Econ, 106-112 Blvd Hop, F-75013 Paris, France
关键词
Tail dependence coefficient; Nonparametric estimation; Copula; Censored likelihood; MULTILINEAR COPULA PROCESS; MODELS; INDEPENDENCE; CONVERGENCE;
D O I
10.1007/s00362-024-01582-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.
引用
收藏
页码:4875 / 4913
页数:39
相关论文
共 50 条