Causal discovery from observational and interventional data across multiple environments

被引:0
|
作者
Li, Adam [1 ]
Jaber, Amin [2 ]
Bareinboim, Elias [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[2] Synlico Inc, South San Francisco, CA USA
关键词
INDEPENDENCE; INFERENCE; DIAGRAMS; MODELS; LATENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A fundamental problem in many sciences is the learning of causal structure underlying a system, typically through observation and experimentation. Commonly, one even collects data across multiple domains, such as gene sequencing from different labs, or neural recordings from different species. Although there exist methods for learning the equivalence class of causal diagrams from observational and experimental data, they are meant to operate in a single domain. In this paper, we develop a fundamental approach to structure learning in non-Markovian systems (i.e. when there exist latent confounders) leveraging observational and interventional data collected from multiple domains. Specifically, we start by showing that learning from observational data in multiple domains is equivalent to learning from interventional data with unknown targets in a single domain. But there are also subtleties when considering observational and experimental data. Using causal invariances derived from do-calculus, we define a property called S-Markov that connects interventional distributions from multiple-domains to graphical criteria on a selection diagram. Leveraging the S-Markov property, we introduce a new constraint-based causal discovery algorithm, S-FCI, that can learn from observational and interventional data from different domains. We prove that the algorithm is sound and subsumes existing constraint-based causal discovery algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Information-Theoretic Causal Discovery and Intervention Detection over Multiple Environments
    Mian, Osman
    Kamp, Michael
    Vreeken, Jilles
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9171 - 9179
  • [22] A Causal Dirichlet Mixture Model for Causal Inference from Observational Data
    Lin, Adi
    Lu, Jie
    Xuan, Junyu
    Zhu, Fujin
    Zhang, Guangquan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (03)
  • [24] Inferring interventional predictions from observational learning data
    Björn Meder
    York Hagmayer
    Michael R. Waldmann
    Psychonomic Bulletin & Review, 2008, 15 : 75 - 80
  • [25] Inferring interventional predictions from observational learning data
    Meder, Bjoern
    Hagmayer, York
    Waldmann, Michael R.
    PSYCHONOMIC BULLETIN & REVIEW, 2008, 15 (01) : 75 - 80
  • [26] Causal Discovery Based on Observational Data and Process Knowledge in Industrial Processes br
    Cao, Liang
    Su, Jianping
    Wang, Yixiu
    Cao, Yankai
    Siang, Lim C.
    Li, Jin
    Saddler, Jack Nicholas
    Gopaluni, Bhushan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (38) : 14272 - 14283
  • [27] A Survey on Non-Temporal Series Observational Data Based Causal Discovery
    Cai R.-C.
    Chen W.
    Zhang K.
    Hao Z.-F.
    2017, Science Press (40): : 1470 - 1490
  • [28] Causal Discovery From Unknown Interventional Datasets Over Overlapping Variable Sets
    Cao, Fuyuan
    Wang, Yunxia
    Yu, Kui
    Liang, Jiye
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7725 - 7742
  • [29] Improved discovery of genetic interactions using CRISPRiSeq across multiple environments
    Jaffe, Mia
    Dziulko, Adam
    Smith, Justin D.
    St Onge, Robert P.
    Levy, Sasha F.
    Sherlock, Gavin
    GENOME RESEARCH, 2019, 29 (04) : 668 - 681
  • [30] Learning Optimal Cyclic Causal Graphs from Interventional Data
    Rantanen, Kari
    Hyttinen, Antti
    Jarvisalo, Matti
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 365 - 376