Cluster Validation Based on Fisher's Linear Discriminant Analysis

被引:0
|
作者
Kaechele, Fabian [1 ]
Schneider, Nora [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Operat Res Analyt & Stat, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Clustering; Cluster validation; Discriminant analysis; Number of clusters; NUMBER; DISTINCTNESS;
D O I
10.1007/s00357-024-09481-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are "valid clusters" or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters k & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<^>*$$\end{document}. Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 50 条
  • [21] ON EXTENSIONS TO FISHER'S LINEAR DISCRIMINANT FUNCTION.
    Longstaff, Ian D.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9 (02) : 321 - 325
  • [22] Geometric interpretation of Fisher's linear discriminant analysis through communication theory
    Fujiki, Jun
    Tanaka, Masaru
    Sakano, Hitoshi
    Kimura, Akisato
    2015 14th IAPR International Conference on Machine Vision Applications (MVA), 2015, : 333 - 336
  • [23] Fisher's linear discriminant embedded metric learning
    Guo, Yiwen
    Ding, Xiaoqing
    Fang, Chi
    Xue, Jing-Hao
    NEUROCOMPUTING, 2014, 143 : 7 - 13
  • [24] Penalized classification using Fisher's linear discriminant
    Witten, Daniela M.
    Tibshirani, Robert
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 753 - 772
  • [25] Palmprint recognition using Fisher's linear discriminant
    Wu, XQ
    Wang, KQ
    Zhang, D
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3150 - 3154
  • [26] Privacy-preserving linear fisher discriminant analysis
    Han, Shuguo
    Ng, Wee Keong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 136 - 147
  • [27] A Gamma-Ray Identification Algorithm Based on Fisher Linear Discriminant Analysis
    Boardman, David
    Flynn, Alison
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (01) : 270 - 277
  • [28] Face recognition by Fisher and scatter linear discriminant analysis
    Bober, M
    Kucharski, K
    Skarbek, W
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 638 - 645
  • [29] Fisher linear discriminant analysis based technique useful for efficient character recognition
    Aradhya, V. N. Manjunath
    Kumar, G. Hemantha
    Noushath, S.
    Shivakumara, P.
    FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SENSING AND INFORMATION PROCESSSING, PROCEEDINGS, 2006, : 49 - +
  • [30] Incremental Fisher linear discriminant based on data denoising
    Wang, Zhan
    Liang, Ting
    Zou, Bin
    Cai, Yaling
    Xu, Jie
    You, Xinge
    KNOWLEDGE-BASED SYSTEMS, 2022, 237