Cluster Validation Based on Fisher's Linear Discriminant Analysis

被引:0
|
作者
Kaechele, Fabian [1 ]
Schneider, Nora [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Operat Res Analyt & Stat, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Clustering; Cluster validation; Discriminant analysis; Number of clusters; NUMBER; DISTINCTNESS;
D O I
10.1007/s00357-024-09481-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are "valid clusters" or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters k & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<^>*$$\end{document}. Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 50 条
  • [1] Sparse Fisher's Linear Discriminant Analysis
    Siddiqui, Hasib
    Hwang, Hau
    COMPUTATIONAL IMAGING IX, 2011, 7873
  • [2] The Fisher's Linear Discriminant
    Iatan, Iuliana F.
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 345 - 352
  • [3] Comparative Performance of Classical Fisher Linear Discriminant Analysis and Robust Fisher Linear Discriminant Analysis
    Okwonu, Friday Zinzendoff
    Othman, Abdul Rahman
    MATEMATIKA, 2013, 29 (01) : 213 - 220
  • [4] Modified Fisher's linear discriminant analysis for hyperspectral imagery
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 503 - 507
  • [5] Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis
    Bian, Wei
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (12) : 2325 - 2337
  • [6] Thresholding based on Fisher linear discriminant
    Abdel-Azim, Gamil
    Abo-Eleneen, Z. A.
    JOURNAL OF PATTERN RECOGNITION RESEARCH, 2011, 6 (02): : 326 - 334
  • [7] Transformation of feature space based on Fisher’s linear discriminant
    Nemirko A.P.
    Pattern Recognition and Image Analysis, 2016, 26 (2) : 257 - 261
  • [8] A co-training algorithm based on modified Fisher's linear discriminant analysis
    Tan, Xue-Min
    Chen, Min-You
    Gan, John Q.
    INTELLIGENT DATA ANALYSIS, 2015, 19 (02) : 279 - 292
  • [9] Generalized Oja's rule for linear discriminant analysis with Fisher criterion
    Principe, JC
    Xu, DX
    Wang, C
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3401 - 3404
  • [10] Sparse Fisher's linear discriminant analysis for partially labeled data
    Lu, Qiyi
    Qiao, Xingye
    STATISTICAL ANALYSIS AND DATA MINING, 2018, 11 (01) : 17 - 31