Reformulations and complexity of the clique interdiction problem by graph mapping

被引:1
|
作者
Mattia, Sara [1 ]
机构
[1] CNR, Ist Anal Sistemi & Informat, Rome, Italy
关键词
Maximum clique; Bilevel programming; Edge clique interdiction; Node clique interdiction; Complexity; Single level reformulation; Facets; MAXIMUM CLIQUE; BOUND ALGORITHM; SET;
D O I
10.1016/j.dam.2021.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how to solve a maximum clique problem on a given graph by an equivalent problem on an auxiliary graph. The transformation has interesting consequences in the bilevel setting. In fact, it allows to map a clique interdiction problem with edge interdiction into a clique interdiction problem with node interdiction. As a byproduct of the mapping, we can generalize to the edge interdiction problem complexity and algorithmic results that hold for the node interdiction problem. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 50 条
  • [41] A Dynamic Network Interdiction Problem
    Lunday, Brian J.
    Sherali, Hanif D.
    INFORMATICA, 2010, 21 (04) : 553 - 574
  • [42] The minimum quasi-clique partitioning problem: Complexity, formulations, and a computational study
    Melo, Rafael A.
    Ribeiro, Celso C.
    Riveaux, Jose A.
    INFORMATION SCIENCES, 2022, 612 : 655 - 674
  • [43] The matching interdiction problem in dendrimers
    Shirdel, Gholam Hassan
    Kahkeshani, Nasrin
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 6 (01): : 63 - 79
  • [44] New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory
    Vladimir Braverman
    Zaoxing Liu
    Tejasvam Singh
    N. V. Vinodchandran
    Lin F. Yang
    Algorithmica, 2018, 80 : 652 - 667
  • [45] New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory
    Braverman, Vladimir
    Liu, Zaoxing
    Singh, Tejasvam
    Vinodchandran, N. V.
    Yang, Lin F.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 151 - 162
  • [46] New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory
    Braverman, Vladimir
    Liu, Zaoxing
    Singh, Tejasvam
    Vinodchandran, N. V.
    Yang, Lin F.
    ALGORITHMICA, 2018, 80 (02) : 652 - 667
  • [47] Parallel Graph Partitioning Framework for Solving the Maximum Clique Problem Using Hadoop
    Guo, Jingjin
    Zhang, Suqi
    Gao, Xing
    Liu, Xiaowei
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 191 - 197
  • [48] THE COMPLEXITY OF GENERALIZED CLIQUE COVERING
    CORNEIL, DG
    FONLUPT, J
    DISCRETE APPLIED MATHEMATICS, 1989, 22 (02) : 109 - 118
  • [49] On the radius and diameter of the clique graph
    Dutton, RD
    Brigham, RC
    DISCRETE MATHEMATICS, 1995, 147 (1-3) : 293 - 295
  • [50] THE GREEDY CLIQUE DECOMPOSITION OF A GRAPH
    MCGUINNESS, S
    JOURNAL OF GRAPH THEORY, 1994, 18 (04) : 427 - 430