Reformulations and complexity of the clique interdiction problem by graph mapping

被引:1
|
作者
Mattia, Sara [1 ]
机构
[1] CNR, Ist Anal Sistemi & Informat, Rome, Italy
关键词
Maximum clique; Bilevel programming; Edge clique interdiction; Node clique interdiction; Complexity; Single level reformulation; Facets; MAXIMUM CLIQUE; BOUND ALGORITHM; SET;
D O I
10.1016/j.dam.2021.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how to solve a maximum clique problem on a given graph by an equivalent problem on an auxiliary graph. The transformation has interesting consequences in the bilevel setting. In fact, it allows to map a clique interdiction problem with edge interdiction into a clique interdiction problem with node interdiction. As a byproduct of the mapping, we can generalize to the edge interdiction problem complexity and algorithmic results that hold for the node interdiction problem. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 50 条
  • [1] The maximum clique interdiction problem
    Furini, Fabio
    Ljubic, Ivana
    Martin, Sebastien
    San Segundo, Pablo
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (01) : 112 - 127
  • [2] Split Clique Graph Complexity
    Alcon, Liliana
    Faria, Luerbio
    De Figueiredo, Celina M. H.
    Gutierrez, Marisa
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 11 - +
  • [3] The complexity of clique graph recognition
    Alcon, Liliana
    Faria, Luerbio
    de Figueiredo, Celina M. H.
    Gutierrez, Marisa
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2072 - 2083
  • [4] Split clique graph complexity
    Alcon, Liliana
    Faria, Luerbio
    de Figueiredo, Celina M. H.
    Gutierrez, Marisa
    THEORETICAL COMPUTER SCIENCE, 2013, 506 : 29 - 42
  • [5] A branch-and-cut algorithm for the Edge Interdiction Clique Problem
    Furini, Fabio
    Ljubic, Ivana
    San Segundo, Pablo
    Zhao, Yanlu
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 294 (01) : 54 - 69
  • [6] The Shortest Path Interdiction Problem with Randomized Interdiction Strategies: Complexity and Algorithms
    Holzmann, Tim
    Smith, J. Cole
    OPERATIONS RESEARCH, 2021, 69 (01) : 82 - 99
  • [7] An algorithm with polynomial time complexity for finding clique in a graph
    Tang, PA
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 500 - 505
  • [8] A spinorial formulation of the maximum clique problem of a graph
    Budinich, M
    Budinich, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
  • [9] A note on the complexity of the maximum edge clique partitioning problem with respect to the clique number
    Sukegawa, Noriyoshi
    Miyauchi, Atsushi
    DISCRETE OPTIMIZATION, 2013, 10 (04) : 331 - 332
  • [10] The algorithmic complexity of the minus clique-transversal problem
    Xu, Guangjun
    Shan, Erfang
    Kang, Liying
    Cheng, T. C. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) : 1410 - 1418