Efficient Bayesian inference under the multispecies coalescent with migration

被引:7
|
作者
Flouri, Tomas [1 ]
Jiao, Xiyun [2 ]
Huang, Jun [3 ]
Rannala, Bruce [4 ]
Yang, Ziheng [1 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London WC1E 6BT, England
[2] China Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
[3] Capital Med Univ, Sch Biomed Engn, Dept Intelligent Med Engn, Beijing 100069, Peoples R China
[4] Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA
基金
英国生物技术与生命科学研究理事会;
关键词
BPP; gene flow; genomics; migration; multispecies coalescent; MAXIMUM-LIKELIHOOD IMPLEMENTATION; ANCESTRAL POPULATION SIZES; DNA-SEQUENCES; GENE FLOW; MODEL; SPECIATION; DIVERGENCE; INTROGRESSION; NUMBER; TREES;
D O I
10.1073/pnas.2310708120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analyses of genome sequence data have revealed pervasive interspecific gene flow and enriched our understanding of the role of gene flow in speciation and adaptation. Inference of gene flow using genomic data requires powerful statistical methods. Yet current likelihood-based methods involve heavy computation and are feasible for small datasets only. Here, we implement the multispecies-coalescent-with-migration model in the Bayesian program bpp, which can be used to test for gene flow and estimate migration rates, as well as species divergence times and population sizes. We develop Markov chain Monte Carlo algorithms for efficient sampling from the posterior, enabling the analysis of genome-scale datasets with thousands of loci. Implementation of both introgression and migration models in the same program allows us to test whether gene flow occurred continuously over time or in pulses. Analyses of genomic data from Anopheles mosquitoes demonstrate rich information in typical genomic datasets about the mode and rate of gene flow.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Anomalous networks under the multispecies coalescent: theory and prevalence
    Ane, Cecile
    Fogg, John
    Allman, Elizabeth S.
    Banos, Hector
    Rhodes, John A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 88 (03)
  • [32] Challenges in Species Tree Estimation Under the Multispecies Coalescent Model
    Xu, Bo
    Yang, Ziheng
    GENETICS, 2016, 204 (04) : 1353 - 1368
  • [33] adaPop: Bayesian inference of dependent population dynamics in coalescent models
    Cappello, Lorenzo
    Kim, Jaehee
    Palacios, Julia A.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (03)
  • [34] Demographic inference under the coalescent in a spatial continuum
    Guindon, Stephane
    Guo, Hongbin
    Welch, David
    THEORETICAL POPULATION BIOLOGY, 2016, 111 : 43 - 50
  • [35] Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent
    Jones, Graham
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (1-2) : 447 - 467
  • [36] Multispecies Coalescent Analysis of the Early Diversification of Neotropical Primates: Phylogenetic Inference under Strong Gene Trees/Species Tree Conflict
    Schrago, Carlos G.
    Menezes, Albert N.
    Furtado, Carolina
    Bonvicino, Cibele R.
    Seuanez, Hector N.
    GENOME BIOLOGY AND EVOLUTION, 2014, 6 (11): : 3105 - 3114
  • [37] Displayed Trees Do Not Determine Distinguishability Under the Network Multispecies Coalescent
    Zhu, Sha
    Degnan, James H.
    SYSTEMATIC BIOLOGY, 2017, 66 (02) : 283 - 298
  • [38] Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent
    Graham Jones
    Journal of Mathematical Biology, 2017, 74 : 447 - 467
  • [39] Bayesian Inference of Local Trees Along Chromosomes by the Sequential Markov Coalescent
    Chaozhi Zheng
    Mary K. Kuhner
    Elizabeth A. Thompson
    Journal of Molecular Evolution, 2014, 78 : 279 - 292
  • [40] Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference
    Zehender, Gianguglielmo
    De Maddalena, Chiara
    Canuti, Marta
    Zappa, Alessandra
    Amendola, Antonella
    Lai, Alessia
    Galli, Massimo
    Tanzi, Elisabetta
    INFECTION GENETICS AND EVOLUTION, 2010, 10 (02) : 215 - 220