Efficient Bayesian inference under the multispecies coalescent with migration

被引:7
|
作者
Flouri, Tomas [1 ]
Jiao, Xiyun [2 ]
Huang, Jun [3 ]
Rannala, Bruce [4 ]
Yang, Ziheng [1 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London WC1E 6BT, England
[2] China Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
[3] Capital Med Univ, Sch Biomed Engn, Dept Intelligent Med Engn, Beijing 100069, Peoples R China
[4] Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA
基金
英国生物技术与生命科学研究理事会;
关键词
BPP; gene flow; genomics; migration; multispecies coalescent; MAXIMUM-LIKELIHOOD IMPLEMENTATION; ANCESTRAL POPULATION SIZES; DNA-SEQUENCES; GENE FLOW; MODEL; SPECIATION; DIVERGENCE; INTROGRESSION; NUMBER; TREES;
D O I
10.1073/pnas.2310708120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analyses of genome sequence data have revealed pervasive interspecific gene flow and enriched our understanding of the role of gene flow in speciation and adaptation. Inference of gene flow using genomic data requires powerful statistical methods. Yet current likelihood-based methods involve heavy computation and are feasible for small datasets only. Here, we implement the multispecies-coalescent-with-migration model in the Bayesian program bpp, which can be used to test for gene flow and estimate migration rates, as well as species divergence times and population sizes. We develop Markov chain Monte Carlo algorithms for efficient sampling from the posterior, enabling the analysis of genome-scale datasets with thousands of loci. Implementation of both introgression and migration models in the same program allows us to test whether gene flow occurred continuously over time or in pulses. Analyses of genomic data from Anopheles mosquitoes demonstrate rich information in typical genomic datasets about the mode and rate of gene flow.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Efficient Bayesian Species Tree Inference under the Multispecies Coalescent
    Rannala, Bruce
    Yang, Ziheng
    SYSTEMATIC BIOLOGY, 2017, 66 (05) : 823 - 842
  • [2] Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent
    Wen, Dingqiao
    Yu, Yun
    Nakhleh, Luay
    PLOS GENETICS, 2016, 12 (05):
  • [3] Bayesian Inference Under the Multispecies Coalescent with Ancient DNA Sequences
    Nagel, Anna A.
    Flouri, Tomas
    Yang, Ziheng
    Rannala, Bruce
    SYSTEMATIC BIOLOGY, 2024, 73 (06) : 964 - 978
  • [4] Efficient Bayesian inference under the structured coalescent
    Vaughan, Timothy G.
    Kuehnert, Denise
    Popinga, Alex
    Welch, David
    Drummond, Alexei J.
    BIOINFORMATICS, 2014, 30 (16) : 2272 - 2279
  • [5] StarBeast3: Adaptive Parallelized Bayesian Inference under the Multispecies Coalescent
    Douglas, Jordan
    Jimenez-Silva, Cinthy L.
    Bouckaert, Remco
    SYSTEMATIC BIOLOGY, 2022, 71 (04) : 901 - 916
  • [6] Comparing inference under the multispecies coalescent with and without recombination
    Yan, Zhi
    Ogilvie, Huw A.
    Nakhleh, Luay
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2023, 181
  • [7] Bayesian Phylogenetic Inference using Relaxed-clocks and the Multispecies Coalescent
    Flouri, Tomas
    Huang, Jun
    Jiao, Xiyun
    Kapli, Paschalia
    Rannala, Bruce
    Yang, Ziheng
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (08)
  • [8] Short branch attraction in phylogenomic inference under the multispecies coalescent
    Liu, Liang
    Yu, Lili
    Wu, Shaoyuan
    Arnold, Jonathan
    Whalen, Christopher
    Davis, Charles
    Edwards, Scott
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [9] Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent (vol 12, e1006006, 2016)
    Wen, Dingqiao
    Yu, Yun
    Nakhleh, Luay
    PLOS GENETICS, 2017, 13 (02):
  • [10] An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference
    Bouckaert, Remco R.
    SYSTEMATIC BIOLOGY, 2022, : 1549 - 1560