Ultralong Cycling and Interfacial Regulation of Bilayer Heterogeneous Composite Solid-State Electrolytes in Lithium Metal Batteries

被引:5
|
作者
Wei, Lai [1 ]
Xu, Xin [1 ]
Xi, Kang [1 ]
Lei, Yue [1 ]
Cheng, Xiang [1 ]
Shi, Xiaobei [1 ]
Wu, Haihua [1 ]
Gao, Yunfang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China
关键词
solid-state electrolyte; poly(ethylene oxide); lithium metal battery; electrospinning; lithiatedzeolite; POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; ZEOLITE;
D O I
10.1021/acsami.4c06026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm(-2). Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g(-1) at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.
引用
收藏
页码:33578 / 33589
页数:12
相关论文
共 50 条
  • [41] Interfacial Nanoarchitectonics for Solid-State Lithium Batteries
    Takada, Kazunori
    LANGMUIR, 2013, 29 (24) : 7538 - 7541
  • [42] Revealing the Role of Liquid Electrolytes in Cycling of Garnet-Based Solid-State Lithium-Metal Batteries
    Yan, Shuo
    Abouali, Sara
    Yim, Chae-Ho
    Zhou, Jigang
    Wang, Jian
    Baranova, Elena A.
    Weck, Arnaud
    Thangadurai, Venkataraman
    Merati, Ali
    Abu-Lebdeh, Yaser
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (33): : 14027 - 14035
  • [43] Advances in Ordered Architecture Design of Composite Solid Electrolytes for Solid-State Lithium Batteries
    Sun, Jichang
    Liu, Chuanbang
    Liu, Huaiyin
    Li, Junwei
    Zheng, Penglun
    Zheng, Yun
    Liu, Zhihong
    CHEMICAL RECORD, 2023, 23 (06):
  • [44] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [45] Enhancing interfacial stability in lithium orthosilicate/polymer blended novel hybrid solid-state electrolytes for all-solid-state lithium metal batteries
    Nelson, Akhil
    Sultana, Irin
    O'Dell, Luke A.
    Rahman, Md Mokhlesur
    Chen, Ying
    JOURNAL OF POWER SOURCES, 2024, 622
  • [46] Fiber-Reinforced Composite Polymer Electrolytes for Solid-State Lithium Batteries
    Gao, Longxue
    Tang, Bin
    Jiang, Haoyang
    Xie, Zhaojun
    Wei, Jinping
    Zhou, Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (03)
  • [47] Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries
    Guo, Junze
    Zheng, Jieping
    Zhang, Weidong
    Lu, Yingying
    ENERGY & FUELS, 2021, 35 (14) : 11118 - 11140
  • [48] A Bilayer Electrolyte Design to Enable High-Areal-Capacity Composite Cathodes in Polymer Electrolytes Based Solid-State Lithium Metal Batteries
    Sahore, Ritu
    Yang, Guang
    Chen, Xi Chelsea
    Tsai, Wan-Yu
    Li, Jianlin
    Dudney, Nancy J.
    Westover, Andrew
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1409 - 1413
  • [49] ELECTROCHEMICAL PROPERTIES AND CYCLING PERFORMANCES OF COMPOSITE ELECTRODES IN SOLID-STATE LITHIUM BATTERIES
    JULIEN, C
    SAIKH, SI
    BALKANSKI, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1992, 14 (01): : 121 - 126
  • [50] The Regulation of Solid Electrolyte Interphase on Composite Lithium Anodes in Solid-State Batteries
    Wang, Zi-You
    Zhao, Chen-Zi
    Yao, Nan
    Lu, Yang
    Xue, Zhou-Qing
    Huang, Xue-Yan
    Xu, Pan
    Huang, Wen-Ze
    Wang, Zi-Xuan
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (02)