Particle Swarm Optimization Algorithm Using Velocity Pausing and Adaptive Strategy

被引:3
|
作者
Tang, Kezong [1 ]
Meng, Chengjian [1 ]
机构
[1] Jingdezhen Ceram Univ, Sch Informat Engn, Jingdezhen 333403, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 06期
关键词
particle swarm optimization; adaptive strategy; velocity pausing; terminal replacement mechanism; symmetric cooperative swarms;
D O I
10.3390/sym16060661
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Particle swarm optimization (PSO) as a swarm intelligence-based optimization algorithm has been widely applied to solve various real-world optimization problems. However, traditional PSO algorithms encounter issues such as premature convergence and an imbalance between global exploration and local exploitation capabilities when dealing with complex optimization tasks. To address these shortcomings, an enhanced PSO algorithm incorporating velocity pausing and adaptive strategies is proposed. By leveraging the search characteristics of velocity pausing and the terminal replacement mechanism, the problem of premature convergence inherent in standard PSO algorithms is mitigated. The algorithm further refines and controls the search space of the particle swarm through time-varying inertia coefficients, symmetric cooperative swarms concepts, and adaptive strategies, balancing global search and local exploitation. The performance of VASPSO was validated on 29 standard functions from Cec2017, comparing it against five PSO variants and seven swarm intelligence algorithms. Experimental results demonstrate that VASPSO exhibits considerable competitiveness when compared with 12 algorithms. The relevant code can be found on our project homepage.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem
    Song, Yingjie
    Liu, Ying
    Chen, Huayue
    Deng, Wu
    ELECTRONICS, 2023, 12 (03)
  • [22] Using relaxation velocity update strategy to improve particle swarm optimization
    Liu, Y
    Qin, Z
    Xu, ZL
    He, XS
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2469 - 2472
  • [23] An adaptive diversity strategy for particle swarm optimization
    Wang, F
    Feng, NQ
    Qiu, YH
    PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (IEEE NLP-KE'05), 2005, : 760 - 764
  • [24] Particle swarm optimization with adaptive learning strategy
    Zhang, Yunfeng
    Liu, Xinxin
    Bao, Fangxun
    Chi, Jing
    Zhang, Caiming
    Liu, Peide
    KNOWLEDGE-BASED SYSTEMS, 2020, 196
  • [25] Quantum particle swarm optimization algorithm based on dynamic adaptive search strategy
    Huo, Jing
    Ma, Xiaoshu
    Telkomnika (Telecommunication Computing Electronics and Control), 2015, 13 (01) : 321 - 330
  • [26] An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization
    Abhishek Dixit
    Ashish Mani
    Rohit Bansal
    Evolutionary Intelligence, 2022, 15 : 1571 - 1585
  • [27] An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization
    Dixit, Abhishek
    Mani, Ashish
    Bansal, Rohit
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 1571 - 1585
  • [28] An Adaptive Particle Swarm Optimization Algorithm for Unconstrained Optimization
    Qian, Feng
    Mahmoudi, Mohammad Reza
    Parvin, Hamid
    Pho, Kim-Hung
    Tuan, Bui Anh
    COMPLEXITY, 2020, 2020
  • [29] An adaptive particle swarm optimization algorithm and simulation
    Zhang Dingxue
    Guan Zhihong
    Liu Xinzhi
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 2399 - 2402
  • [30] A New Adaptive Particle Swarm Optimization Algorithm
    Zhu Jinrong
    Zhao Jianbao
    Li Xiaoning
    WMSO: 2008 INTERNATIONAL WORKSHOP ON MODELLING, SIMULATION AND OPTIMIZATION, PROCEEDINGS, 2009, : 456 - +