The Supersingular Endomorphism Ring and One Endomorphism Problems are Equivalent

被引:0
|
作者
Page, Aurel [1 ]
Wesolowski, Benjamin [2 ]
机构
[1] Univ Bordeaux, CNRS, INRIA, Bordeaux INP,IMB,UMR 5251, F-33400 Talence, France
[2] ENS Lyon, CNRS, UMPA, UMR 5669, Lyon, France
来源
ADVANCES IN CRYPTOLOGY, PT VI, EUROCRYPT 2024 | 2024年 / 14656卷
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The supersingular Endomorphism Ring problem is the following: given a supersingular elliptic curve, compute all of its endomorphisms. The presumed hardness of this problem is foundational for isogeny-based cryptography. The One Endomorphism problem only asks to find a single non-scalar endomorphism. We prove that these two problems are equivalent, under probabilistic polynomial time reductions. We prove a number of consequences. First, assuming the hardness of the endomorphism ring problem, the Charles-Goren-Lauter hash function is collision resistant, and the SQIsign identification protocol is sound for uniformly random keys. Second, the endomorphism ring problem is equivalent to the problem of computing arbitrary isogenies between supersingular elliptic curves, a result previously known only for isogenies of smooth degree. Third, there exists an unconditional probabilistic algorithm to solve the endomorphism ring problem in time (O) over tilde (p(1/2)), a result that previously required to assume the generalized Riemann hypothesis. To prove our main result, we introduce a flexible framework for the study of isogeny graphs with additional information. We prove a general and easy-to-use rapid mixing theorem.
引用
收藏
页码:388 / 417
页数:30
相关论文
共 50 条
  • [21] Abelian groups with semiprime endomorphism ring
    Misyakova, A. V.
    SBORNIK MATHEMATICS, 2011, 202 (5-6) : 739 - 748
  • [22] The endomorphism ring of a localized coherent functor
    Herzog, I
    JOURNAL OF ALGEBRA, 1997, 191 (01) : 416 - 426
  • [23] RIGOROUS COMPUTATION OF THE ENDOMORPHISM RING OF A JACOBIAN
    Costa, Edgar
    Mascot, Nicolas
    Sijsling, Jeroen
    Voight, John
    MATHEMATICS OF COMPUTATION, 2019, 88 (317) : 1303 - 1339
  • [24] THE ENDOMORPHISM RING OF A LOCALLY FREE MODULE
    FRANZSEN, WN
    SCHULTZ, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (DEC): : 308 - 326
  • [25] The endomorphism ring of projectives and the Bernstein centre
    Pyvovarov, Alexandre
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (01): : 49 - 71
  • [26] ARMENDARIZ PROPERTIES RELATIVE TO A RING ENDOMORPHISM
    Zhao, Liang
    Yan, Xiaoguang
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (09) : 3465 - 3475
  • [27] QUASIHOMOGENEITY OF CURVES AND THE JACOBIAN ENDOMORPHISM RING
    Granger, Michel
    Schulze, Mathias
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 861 - 870
  • [28] Modules with Morita-equivalent endomorphism rings
    Albrecht, U
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (04): : 665 - 681
  • [29] On a property of the endomorphism ring of an abelian group
    Misyakov, V. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2010, (11): : 38 - 46
  • [30] ENDOMORPHISM RING THEOREM FOR FROBENIUS EXTENSIONS
    MORITA, K
    MATHEMATISCHE ZEITSCHRIFT, 1967, 102 (05) : 385 - &