On p-groups with a maximal elementary abelian normal subgroup of rank k
被引:0
|
作者:
Halasi, Zoltan
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, HungaryEotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Halasi, Zoltan
[1
,2
]
Podoski, Karoly
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, HungaryEotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Podoski, Karoly
[2
]
Pyber, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, HungaryEotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Pyber, Laszlo
[2
]
Szabo, Endre
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, HungaryEotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
Szabo, Endre
[2
]
机构:
[1] Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Reny Inst Math, Realtanoda utca 13-15, H-1053 Budapest, Hungary
p-rank of a p-group;
Size of a minimal set of generators for a linear group;
GENERATORS;
NUMBER;
D O I:
10.1016/j.jalgebra.2024.02.026
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
There are several results in the literature concerning p-groups G with a maximal elementary abelian normal subgroup of rank k due to Thompson, Mann and others. Following an idea of Sambale we obtain bounds for the number of generators etc. of a 2-group G in terms of k, which were previously known only for p > 2. We also prove a theorem that is new even for odd primes. Namely, we show that if G has a maximal elementary abelian normal subgroup of rank k, then for any abelian subgroup A the Frattini subgroup Phi(A) can be generated by 2k elements (3k when p = 2). The proof of this rests upon the following result of independent interest: If V is an n-dimensional vector space, then any commutative subalgebra of End(V) contains a zero algebra of codimension at most n. (c) 2024 Elsevier Inc. All rights reserved.