Mean curvature flow solitons in warped products: nonexistence, rigidity and stability

被引:0
|
作者
de Lima, Henrique F. [1 ]
Santos, Marcio S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Riemannian warped products; Schwarzschild and Reissner-Nordstr & ouml; m spaces; Mean curvature flow solitons; Self-shrinkers; Self-expanders; Translating solitons; Entire graphs; Strong stability; COMPLETE VERTICAL GRAPHS; COMPLETE SELF-SHRINKERS; HYPERSURFACES; THEOREMS; UNIQUENESS; SURFACES; MANIFOLDS; INFINITY; UNICITY;
D O I
10.1007/s12215-024-01066-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several aspects of the geometry of m-dimensional mean curvature flow solitons immersed in a Riemannian warped product IxfMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times _{f}M<^>n$$\end{document} (m <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document}), with base I subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset {\mathbb {R}}$$\end{document}, fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} and warping function f is an element of C infinity(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C<^>\infty (I)$$\end{document}. In this context, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to obtain nonexistence results concerning these geometric objects. When m=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n$$\end{document}, we investigate complete two-sided hypersurfaces and, in particular, entire graphs constructed over the fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} which are mean curvature flow solitons. Furthermore, we infer the stability of closed mean curvature flow solitons with respect to an appropriate stability operator. Applications to self-shrinkers and self-expanders in the Euclidean space and to mean curvature flow solitons in important ambient spaces, like the pseudo-hyperbolic, Schwarzschild and Reissner-Nordstr & ouml;m spaces, are also given.
引用
收藏
页码:2653 / 2688
页数:36
相关论文
共 50 条
  • [21] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    Danilo F. da Silva
    Eraldo A. Lima
    Henrique F. de Lima
    manuscripta mathematica, 2024, 173 : 451 - 462
  • [22] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    da Silva, Danilo F.
    Lima, Eraldo A., Jr.
    de Lima, Henrique F.
    MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 451 - 462
  • [23] SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW
    Drugan, Gregory
    Lee, Hojoo
    Wheeler, Glen
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (02) : 309 - 326
  • [24] Mean curvature flow on Ricci solitons
    Tsatis, Efstratios
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (04)
  • [25] Translating solitons of the mean curvature flow
    Y. L. Xin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1995 - 2016
  • [26] Translating solitons of the mean curvature flow
    Xin, Y. L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 1995 - 2016
  • [27] SUBMANIFOLDS IMMERSED IN A WARPED PRODUCT: RIGIDITY AND NONEXISTENCE
    Araujo, Jogli G.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (02) : 811 - 821
  • [28] The Mean Curvature Type Flow in Lorentzian Warped Product
    Guanghan Li
    Kuicheng Ma
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [29] RIGIDITY AND NONEXISTENCE OF RIEMANNIAN IMMERSIONS IN SEMI-RIEMANNIAN WARPED PRODUCTS VIA PARABOLICITY
    Antonia, Railane
    de Lima, Henrique F.
    Santos, Marcio S.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (01) : 41 - 63
  • [30] Rigidity of generic singularities of mean curvature flow
    Tobias Holck Colding
    Tom Ilmanen
    William P. Minicozzi
    Publications mathématiques de l'IHÉS, 2015, 121 : 363 - 382