Low-carbon power system operation with disperse carbon capture-transportation-utilization chain

被引:0
|
作者
Song, Zhenzi [1 ]
Wang, Xiuli [1 ]
Zhao, Tianyang [2 ]
Hesamzadeh, Mohammad Reza [3 ]
Qian, Tao [4 ]
Huang, Jing [5 ]
Li, Xin [6 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China
[2] Jinan Univ, Energy & Elect Res Ctr, Jinan, Guangdong, Peoples R China
[3] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Stockholm, Sweden
[4] Southeast Univ, Sch Elect Engn, Nanjing, Peoples R China
[5] Sichuan Univ, Sch Elect Engn, Chengdu, Peoples R China
[6] State Grid Shaanxi Elect Power Co Ltd, Xian, Peoples R China
关键词
carbon capture and storage; decomposition; linearization techniques; network topology; stochastic programming; UNIT COMMITMENT; CO2; CAPTURE; ENERGY; DISPATCH; STORAGE; OPTIMIZATION; GENERATION; EFFICIENCY; RESOURCES; PLANTS;
D O I
10.1049/gtd2.13184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The carbon capture-transportation-utilization (C-CTU) chain strengthens the coupling between terminal energy consumption and renewable energy resources (RES), achieving carbon emission reduction in power generation sectors. However, the dynamic operation of the C-CTU chain and the uncertainties induced by RES output pose new challenges for the low-carbon operation. To address above challenges, the nonlinear dynamic operation model of C-CTU chain is first proposed in this study. It is further incorporated into the day-ahead operation scheme of the electricity-carbon integrated system considering the stochastic nature of wind power. This scheme is treated as a two-stage stochastic integer programming (TS-SIP) problem with a mixed-integer nonlinear recourse. By means of the polyhedral envelope-based linearization method, this recourse is reformulated into its linear counterpart. To further improve the computational performance of classical decomposition algorithms, a novel Benders decomposition framework with hybrid cutting plane strategies is proposed to obtain better feasible solutions within a limited time. Simulations are conducted on two power system test cases with the C-CTU chain. Numerical results indicate that the engagement of C-CTU chain promotes the low-carbon economic operation of the power system. Also, the proposed decomposition algorithm shows a superior solution capability to handle large-scale TS-SIP than state-of-the-art commercial solvers. Nonlinear dynamic model of Carbon Capture-Transportation-Utilization Chain is established. A TS-SIP model for the day-ahead operation scheme of the electricity-carbon integrated system is constructed. An efficient Benders decomposition framework is designed image
引用
收藏
页码:2089 / 2104
页数:16
相关论文
共 50 条
  • [41] Low-carbon Planning of Power System Considering Carbon Emission Flow
    Zhao W.
    Xiong Z.
    Pan Y.
    Li F.
    Xu P.
    Lai X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (09): : 23 - 33
  • [42] Low-carbon economic dispatching of integrated energy system with P2G considering comprehensive and flexible operation mode of carbon capture power plant
    Wang Y.
    Li M.
    Qi Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43 (01): : 1 - 8
  • [43] The Low-Carbon Supply Chain Coordination Problem with Consumers' Low-Carbon Preference
    Wu, Dan
    Yang, Yuxiang
    SUSTAINABILITY, 2020, 12 (09)
  • [44] Multi Objective Low Carbon Economic Dispatch Of Power System Considering Integrated Flexible Operation Of Carbon Capture Power Plant
    Cui Yang
    Zhang Cong
    Deng Guibo
    Li Yicheng
    Yu Shipeng
    Shen Zhuo
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 321 - 326
  • [45] Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions
    Manaf, Norhuda Abdul
    Qadir, Abdul
    Abbas, Ali
    APPLIED ENERGY, 2016, 169 : 912 - 926
  • [46] Collaborative optimization of configuration-operation for coal-fired power plants with carbon capture considering low-carbon demand response
    Le S.
    Zhang Y.
    Zhu S.
    Xie S.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (07): : 278 - 286
  • [47] Low-carbon economic analysis of a virtual power plant with wind and solar power considering the integrated flexible operation mode of a carbon capture thermoelectric unit
    Zhu, Chunming
    Bao, Gang
    Xu, Rui
    Song, Zhenyan
    Liu, Yikai
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 130
  • [48] Adjustable robust power dispatch with combined wind-storage system and carbon capture power plants under low-carbon economy
    Zhang, Rufeng
    Jiang, Tao
    Bai, Linquan
    Li, Guoqing
    Chen, Houhe
    Li, Xue
    Li, Fangxing
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 113 : 772 - 781
  • [49] Direct air capture integration with low-carbon heat: Process engineering and power system analysis
    Mohan, Aniruddh
    Cheng, Fangwei
    Luo, Hongxi
    Greig, Chris
    Larson, Eric
    Jenkins, Jesse D.
    ENERGY CONVERSION AND MANAGEMENT, 2024, 322
  • [50] Review on Low-carbon Planning and Operation of Integrated Energy System
    Song X.
    Shi Q.
    Ju Y.
    Ge H.
    Zhang J.
    Lu Y.
    Yu K.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (03): : 1053 - 1066