On the uniqueness of variable coefficient Schrodinger equations
被引:2
|
作者:
论文数: 引用数:
h-index:
机构:
Federico, Serena
[1
]
Li, Zongyuan
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R ChinaUniv Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
Li, Zongyuan
[2
]
Yu, Xueying
论文数: 0引用数: 0
h-index: 0
机构:
Oregon State Univ, Dept Math, Kidder Hall 368, Corvallis, OR 97331 USA
Univ Washington, Dept Math, C138 Padelford Hall,Box 354350, Seattle, WA 98195 USAUniv Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
Yu, Xueying
[3
,4
]
机构:
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[2] City Univ Hong Kong, Dept Math, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[3] Oregon State Univ, Dept Math, Kidder Hall 368, Corvallis, OR 97331 USA
[4] Univ Washington, Dept Math, C138 Padelford Hall,Box 354350, Seattle, WA 98195 USA
In this paper, we prove unique continuation properties for linear variable coefficient Schrodinger equations with bounded real potentials. Under certain smallness conditions on the leading coefficients, we prove that solutions decaying faster than any cubic exponential rate at two different times must be identically zero. Assuming a transversally anisotropic type condition, we recover the sharp Gaussian (quadratic exponential) rate in the series of works by Escauriaza-Kenig-Ponce-Vega [On uniqueness properties of solutions of Schrodinger equations, Comm. Partial Differential Equations 31(10-12) (2006) 1811-1823; Hardy's uncertainty principle, convexity and Schrodinger evolutions, J. Eur. Math. Soc. (JEMS) 10(4) (2008) 883-907; The sharp Hardy uncertainty principle for Schrodinger evolutions, Duke Math. J. 155(1) (2010) 163-187].