On the uniqueness of variable coefficient Schrodinger equations

被引:2
|
作者
Federico, Serena [1 ]
Li, Zongyuan [2 ]
Yu, Xueying [3 ,4 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[2] City Univ Hong Kong, Dept Math, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[3] Oregon State Univ, Dept Math, Kidder Hall 368, Corvallis, OR 97331 USA
[4] Univ Washington, Dept Math, C138 Padelford Hall,Box 354350, Seattle, WA 98195 USA
关键词
Schrodinger equations with variable coefficients; unique continuation; Carleman inequality; logarithmic convexity; HARDY UNCERTAINTY PRINCIPLE; CONTINUATION PROPERTIES; CONVEXITY; OPERATORS;
D O I
10.1142/S0219199724500160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove unique continuation properties for linear variable coefficient Schrodinger equations with bounded real potentials. Under certain smallness conditions on the leading coefficients, we prove that solutions decaying faster than any cubic exponential rate at two different times must be identically zero. Assuming a transversally anisotropic type condition, we recover the sharp Gaussian (quadratic exponential) rate in the series of works by Escauriaza-Kenig-Ponce-Vega [On uniqueness properties of solutions of Schrodinger equations, Comm. Partial Differential Equations 31(10-12) (2006) 1811-1823; Hardy's uncertainty principle, convexity and Schrodinger evolutions, J. Eur. Math. Soc. (JEMS) 10(4) (2008) 883-907; The sharp Hardy uncertainty principle for Schrodinger evolutions, Duke Math. J. 155(1) (2010) 163-187].
引用
收藏
页数:45
相关论文
共 50 条