Genome-wide identification and expression analysis of the Dof gene family reveals their involvement in hormone response and abiotic stresses in sunflower ( Helianthus annuus L.)

被引:15
|
作者
Song, Huifang [1 ]
Ji, Xuchao [1 ]
Wang, Mingyang [2 ]
Li, Juan [2 ]
Wang, Xi [1 ]
Meng, Liying [1 ]
Wei, Peipei [1 ]
Xu, Haiyan [1 ]
Niu, Tianzeng [1 ]
Liu, Ake [1 ]
机构
[1] Changzhi Univ, Dept Life Sci, Changzhi 046011, Peoples R China
[2] Shanxi Normal Univ, Sch Life Sci, Taiyuan 030031, Peoples R China
关键词
Sunflower; Dof gene family; Phylogenetic analysis; Gene duplication; Abiotic stress; Expression profile; TRANSCRIPTIONAL REGULATORY NETWORKS; DNA-BINDING; DOMAIN PROTEINS; FLOWERING TIME; ARABIDOPSIS; EVOLUTION; MAIZE; OVEREXPRESSION; DUPLICATION; TOLERANCE;
D O I
10.1016/j.gene.2024.148336
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
DNA binding with one finger (Dof), plant-specific zinc finger transcription factors, can participate in various physiological and biochemical processes during the life of plants. As one of the most important oil crops in the world, sunflower (Helianthus annuus L.) has significant economic and ornamental value. However, a systematic analysis of H. annuus Dof (HaDof) members and their functions has not been extensively conducted. In this study, we identified 50 HaDof genes that are unevenly distributed on 17 chromosomes of sunflower. We present a comprehensive overview of the HaDof genes, including their chromosome locations, phylogenetic analysis, and expression profile characterization. Phylogenetic analysis classified the 366 Dof members identified from 11 species into four groups (further subdivided into nine subfamilies). Segmental duplications are predominantly contributed to the expansion of sunflower Dof genes, and all segmental duplicate gene pairs are under purifying selection due to strong evolutionary constraints. Furthermore, we observed differential expression patterns for HaDof genes in normal tissues as well as under hormone treatment or abiotic stress conditions by analyzing RNAseq data from previous studies and RT-qPCR data in our current study. The expression of HaDof04 and HaDof43 were not detected in any samples, which implied that they may be gradually undergoing pseudogenization process. Some HaDof genes, such as HaDof25 and HaDof30, showed responsiveness to exogenous plant hormones, such as kinetin, brassinosteroid, auxin or strigolactone, while others like HaDof15 and HaDof35 may participate in abiotic stress resistance of sunflower seedling. Our study represents the initial step towards understanding the phylogeny and expression characterization of sunflower Dof family genes, which may provide valuable reference information for functional studies on hormone response, abiotic stress resistance, and molecular breeding in sunflower and other species.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.)
    Shefali Mishra
    Reeti Chaudhary
    Bharti Pandey
    Gyanendra Singh
    Pradeep Sharma
    Scientific Reports, 13
  • [22] Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.)
    Ren, Wenhui
    Zhang, Chengyu
    Wang, Mengge
    Zhang, Chunyu
    Xu, Xiaoqiong
    Huang, Yuji
    Chen, Yukun
    Lin, Yuling
    Lai, Zhongxiong
    GENE, 2022, 845
  • [23] Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses
    Ji, Xianwen
    Jiang, Ziying
    Wang, Jichao
    Dong, Lili
    Deng, Xinyi
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (08) : 1839 - 1850
  • [24] Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.)
    Neupane, Surendra
    Andersen, Ethan J.
    Neupane, Achal
    Nepal, Madhav P.
    GENES, 2018, 9 (08)
  • [25] Genome-wide identification and in-silico expression analysis of CCO gene family in sunflower (Helianthus annnus) against abiotic stress
    Sami, Adnan
    Haider, Muhammad Zeeshan
    Shafiq, Muhammad
    Sadiq, Saleh
    Ahmad, Farooq
    PLANT MOLECULAR BIOLOGY, 2024, 114 (02)
  • [26] Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.)
    Li, Juanjuan
    Liu, Ake
    Najeeb, Ullah
    Zhou, Weijun
    Liu, Hui
    Yan, Guijun
    Gill, Rafaqat Ali
    Yun, Xiaopeng
    Bai, Quanjiang
    Xu, Ling
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 175 : 188 - 198
  • [27] Genome-wide identification fi cation and evolution of the SAP gene family in sunflower fl ower ( Helianthus annuus L.) and expression analysis under salt and drought stress
    Zhang, Chun
    Zhang, Xiaohong
    Wu, Yue
    Li, Xiang
    Du, Chao
    Di, Na
    Chen, Yang
    PEERJ, 2024, 12
  • [28] A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)
    Flavia Mascagni
    Alberto Vangelisti
    Gabriele Usai
    Tommaso Giordani
    Andrea Cavallini
    Lucia Natali
    Genetica, 2020, 148 : 13 - 23
  • [29] A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)
    Mascagni, Flavia
    Vangelisti, Alberto
    Usai, Gabriele
    Giordani, Tommaso
    Cavallini, Andrea
    Natali, Lucia
    GENETICA, 2020, 148 (01) : 13 - 23
  • [30] Genome-Wide Identification, Characterization, and Expression Analysis under Abiotic Stresses of the UBP Gene Family in Rice (Oryza sativa L.)
    Zou, Xiaoxiao
    Li, Yongliang
    Yin, Huangping
    Xu, Jiajin
    Li, Zeqi
    Jiang, Shuai
    Chen, Fenglin
    Li, You
    Xiao, Wenjun
    Liu, Shucan
    Guo, Xinhong
    AGRONOMY-BASEL, 2023, 13 (11):