Combining kernelised autoencoding and centroid prediction for dynamic multi-objective optimisation

被引:0
|
作者
Hou, Zhanglu [1 ,2 ]
Zou, Juan [1 ,2 ]
Ruan, Gan [3 ]
Liu, Yuan [1 ,2 ]
Xia, Yizhang [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Engn Res Ctr Intelligent Syst Optimizat & Se, Key Lab Intelligent Comp & Informat Proc, Minist Educ China, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Key Lab Hunan Prov Internet Things & Informat Secu, Xiangtan, Hunan, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham, England
基金
中国国家自然科学基金;
关键词
multi-objective optimisation; optimisation; EVOLUTIONARY SEARCH; ALGORITHM;
D O I
10.1049/cit2.12335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms face significant challenges when dealing with dynamic multi-objective optimisation because Pareto optimal solutions and/or Pareto optimal fronts change. The authors propose a unified paradigm, which combines the kernelised autoncoding evolutionary search and the centroid-based prediction (denoted by KAEP), for solving dynamic multi-objective optimisation problems (DMOPs). Specifically, whenever a change is detected, KAEP reacts effectively to it by generating two subpopulations. The first subpopulation is generated by a simple centroid-based prediction strategy. For the second initial subpopulation, the kernel autoencoder is derived to predict the moving of the Pareto-optimal solutions based on the historical elite solutions. In this way, an initial population is predicted by the proposed combination strategies with good convergence and diversity, which can be effective for solving DMOPs. The performance of the proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems. Empirical results fully demonstrate the superiority of the proposed method on most test instances.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Multi-objective optimisation in the presence of uncertainty
    Fieldsend, JE
    Everson, RM
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 243 - 250
  • [32] Multi-objective Optimisation of Marine Propellers
    Mirjalili, Seyedali
    Lewis, Andrew
    Mirjalili, Seyed Ali Mohammad
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2247 - 2256
  • [33] Multi-Objective Optimisation of Metamaterial Antenna
    Capers, James R.
    Boyes, Stephen J.
    Hibbins, Alastair P.
    Horsley, Simon A. R.
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
  • [34] Multi-Objective Optimisation by Reinforcement Learning
    Liao, H. L.
    Wu, Q. H.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [35] Multi-objective optimisation with robustness and uncertainty
    Aitbrik, B.
    Bouhaddi, N.
    Cogan, S.
    Huang, S. J.
    Proceedings of The Seventh International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2003, : 73 - 74
  • [36] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [37] Multi-objective binary search optimisation
    Hughes, EJ
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2003, 2632 : 102 - 117
  • [38] Multi-objective optimisation for regression testing
    Zheng, Wei
    Hierons, Robert M.
    Li, Miqing
    Liu, XiaoHui
    Vinciotti, Veronica
    INFORMATION SCIENCES, 2016, 334 : 1 - 16
  • [39] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [40] INTERACTIVE APPROACH AND MULTI-OBJECTIVE OPTIMISATION
    Sevcik, Vitezslav
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, 2010, : 373 - 380