Combining kernelised autoencoding and centroid prediction for dynamic multi-objective optimisation

被引:0
|
作者
Hou, Zhanglu [1 ,2 ]
Zou, Juan [1 ,2 ]
Ruan, Gan [3 ]
Liu, Yuan [1 ,2 ]
Xia, Yizhang [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Engn Res Ctr Intelligent Syst Optimizat & Se, Key Lab Intelligent Comp & Informat Proc, Minist Educ China, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Key Lab Hunan Prov Internet Things & Informat Secu, Xiangtan, Hunan, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham, England
基金
中国国家自然科学基金;
关键词
multi-objective optimisation; optimisation; EVOLUTIONARY SEARCH; ALGORITHM;
D O I
10.1049/cit2.12335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms face significant challenges when dealing with dynamic multi-objective optimisation because Pareto optimal solutions and/or Pareto optimal fronts change. The authors propose a unified paradigm, which combines the kernelised autoncoding evolutionary search and the centroid-based prediction (denoted by KAEP), for solving dynamic multi-objective optimisation problems (DMOPs). Specifically, whenever a change is detected, KAEP reacts effectively to it by generating two subpopulations. The first subpopulation is generated by a simple centroid-based prediction strategy. For the second initial subpopulation, the kernel autoencoder is derived to predict the moving of the Pareto-optimal solutions based on the historical elite solutions. In this way, an initial population is predicted by the proposed combination strategies with good convergence and diversity, which can be effective for solving DMOPs. The performance of the proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems. Empirical results fully demonstrate the superiority of the proposed method on most test instances.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Challenges of Dynamic Multi-objective Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 254 - 261
  • [2] Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction
    Galvan, Edgar
    Stapleton, Fergal
    APPLIED SOFT COMPUTING, 2023, 146
  • [3] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [4] Benchmarks for Dynamic Multi-Objective Optimisation Algorithms
    Helbig, Marde
    Engelbrecht, Andries P.
    ACM COMPUTING SURVEYS, 2014, 46 (03)
  • [5] Multi-objective optimisation
    Bortfeld, T.
    RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S72 - S73
  • [6] High performance computing for dynamic multi-objective optimisation
    Department of Computer Architecture and Technology, University of Granada, ETSIIT, Daniel Saucedo s/n, 18071 Granada, Spain
    不详
    Int. J. High Perform. Syst. Archit., 2008, 4 (241-250): : 241 - 250
  • [7] Multi-objective Dynamic Optimisation of Ampicillin Batch Crystallisation
    Dafnomilis, Antonios
    Diab, Samir
    Rodman, Alistair D.
    Boudouvis, Andreas G.
    Gerogiorgis, Dimitrios, I
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 433 - 438
  • [8] Multi-Objective Security Hardening Optimisation for Dynamic Networks
    Enoch, Simon Yusuf
    Hong, Jin B.
    Ge, Mengmeng
    Khan, Khaled M.
    Kim, Dong Seong
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [9] Dynamic multi-objective optimisation for machining gradient materials
    Roy, R.
    Mehnen, J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (01) : 429 - 432
  • [10] Improved Dynamic Lexicographic Ordering for Multi-Objective Optimisation
    Castro-Gutierrez, Juan
    Landa-Silva, Dario
    Moreno Perez, Jose
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XI, PT II, 2010, 6239 : 31 - +