Experimental Study of Auxetic Structures Made of Re-Entrant ("Bow-Tie") Cells

被引:2
|
作者
Plewa, Julian [1 ]
Plonska, Malgorzata [1 ]
Feliksik, Kamil [1 ]
Junak, Grzegorz [2 ]
机构
[1] Univ Silesia Katowice, Inst Mat Engn, Fac Sci & Technol, 75 Pulku Piechoty Str, PL-41500 Chorzow, Poland
[2] Silesian Tech Univ, Fac Mat Engn, 8 Krasinskiego Str, PL-40019 Katowice, Poland
关键词
auxetic; re-entrant unit cell; Poisson's ratio; arch struts; NEGATIVE POISSON RATIO; TENSILE PROPERTIES; BEHAVIOR; METAMATERIALS; DEFORMATION; FOAMS;
D O I
10.3390/ma17133061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article presents a study of metamaterial structures that exhibit auxetic properties. This unusual phenomenon of simultaneous orthogonal expansion of the metamaterial in tension, and vice versa in compression, with vertical and horizontal contraction, is explored for structures made of re-entrant unit cells. The geometry of such structures is analysed in detail, and the relationships are determined by the value of the Poisson's ratio. It is shown that the Poisson's ratio depends not only on the geometry of the unit cell but also on the degree of strain. Depending on the dimensions of the structure's horizontal and inclined struts, the limit values are determined for the angle between them. By creating physical structures made of re-entrant cells, it is demonstrated that the mechanism of change in the structure's dimensions is not due to the hinging but to the bending of the struts. The experimental section contains the results of compression tests of a symmetrical structure and tensile tests of a flat mesh structure. In the case of the mesh structure, a modification of the re-entrant cells was used to create arched strut joints. This modification makes it possible to obtain greater elongation of the mesh structure and larger NPR values.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] In-plane elasticity of a multi re-entrant auxetic honeycomb
    Harkati, E.
    Daoudi, N.
    Bezazi, A.
    Haddad, A.
    Scarpa, F.
    COMPOSITE STRUCTURES, 2017, 180 : 130 - 139
  • [32] Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading
    Vyavahare, Swapnil
    Kumar, Shailendra
    RAPID PROTOTYPING JOURNAL, 2021, 27 (02) : 223 - 244
  • [33] Modified re-entrant auxetic metamaterials with energy absorption enhancement
    Etemadi, Ehsan
    Zamani, Alireza M. M.
    Scarpa, Fabrizio
    Zeeshan, Muhammad
    Hosseinabadi, Mahbubeh
    Hu, Hong
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [34] Application of Re-Entrant Honeycomb Auxetic Structure in Force Measurements
    Li, Pengju
    Zhang, Xilin
    Zhang, Zhengkai
    Wen, Qingguo
    IEEE SENSORS JOURNAL, 2021, 21 (21) : 24202 - 24208
  • [35] Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties
    Mustahsan, Farrukh
    Khan, Sohaib Z.
    Zaidi, Asad A.
    Alahmadi, Yaser H.
    Mahmoud, Essam R., I
    Almohamadi, Hamad
    MATERIALS, 2022, 15 (22)
  • [36] Analysis of tensile behaviour of hyperelastic auxetic cellular materials with re-entrant hexagonal cells
    Gu, Longxin
    Xu, Qiaoli
    Du, Zhaoqun
    JOURNAL OF THE TEXTILE INSTITUTE, 2021, 112 (02) : 173 - 186
  • [37] Enhancing the energy absorption capability of auxetic metamaterials through auxetic cells within re-entrant circular units
    Etemadi, Ehsan
    Hosseinabadi, Mahbubeh
    Taghizadeh, Mohsen
    Scarpa, Fabrizio
    Hu, Hong
    ENGINEERING STRUCTURES, 2024, 315
  • [38] Analysis of Mechanical Properties and Parameter Dependency of Novel, Doubly Re-Entrant Auxetic Honeycomb Structures
    Szeles, Levente
    Horvath, Richard
    Cveticanin, Livia
    POLYMERS, 2024, 16 (17)
  • [39] Effect of fillers on compression loading performance of modified re-entrant honeycomb auxetic sandwich structures
    Faisal, Nadimul Haque
    Scott, Lindsay
    Booth, Findlay
    Duncan, Scott
    McLeod, Abbi
    Droubi, Mohamad Ghazi
    Njuguna, James
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2023, 58 (02): : 98 - 117
  • [40] Additive manufactured 3D re-entrant auxetic structures for enhanced impact resistance
    Nam, Ryan
    Nam, Daniel
    Naguib, Hani E.
    SMART MATERIALS AND STRUCTURES, 2024, 33 (12)