Improved multi-scale fusion network for solving non-smooth elliptic interface problems with applications

被引:0
|
作者
Ying, Jinyong [1 ]
Li, Jiao [2 ]
Liu, Qiong [1 ]
Chen, Yinghao [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
关键词
Deep learning method; Elliptic interface problem; The discontinuity-capturing method; Convergence analysis; Size-modified dielectric continuum model; Solvation free energy; INFORMED NEURAL-NETWORKS; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.apm.2024.04.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The utilization of deep learning methodologies for addressing partial differential equations (PDEs) has garnered significant attention in recent years. This paper introduces an improved network structure tailored for the discontinuity -capturing, enabling the resolution of interface problem through a unified neural network framework. Employing the probability space filling argument, we show that our model can generate convergent sequences, where the convergence rate depends on the number of sampling points. Several numerical experiments with regular and irregular interfaces are conducted to elucidate the convergence characteristics, thereby validating the theoretical assertions. Furthermore, we apply our approach to effectively solve the size -modified Poisson -Boltzmann test model, utilizing it for predicting electrostatics and the solvation free energies for proteins immersed in ionic solvents, thus showcasing practical applications of our method.
引用
收藏
页码:274 / 297
页数:24
相关论文
共 50 条
  • [31] STOCHASTIC METHODS OF SOLVING NON-SMOOTH EXTREMAL PROBLEMS - RUSSIAN - GUPAL,AM
    PICEK, K
    EKONOMICKO-MATEMATICKY OBZOR, 1980, 16 (03): : 356 - 356
  • [32] On the Use of Biased-Randomized Algorithms for Solving Non-Smooth Optimization Problems
    Alejandro Juan, Angel
    Gunes Corlu, Canan
    David Tordecilla, Rafael
    de la Torre, Rocio
    Ferrer, Albert
    ALGORITHMS, 2020, 13 (01)
  • [33] Discontinuous Galerkin method for a class of elliptic multi-scale problems
    Yuan, Ling
    Shu, Chi-Wang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1017 - 1032
  • [34] Vehicle color recognition based on smooth modulation neural network with multi-scale feature fusion
    HU Mingdi
    BAI Long
    FAN Jiulun
    ZHAO Sirui
    CHEN Enhong
    Frontiers of Computer Science, 2023, 17 (03)
  • [35] Multi-Scale and Multi-Stream Fusion Network for Pansharpening
    Jian, Lihua
    Wu, Shaowu
    Chen, Lihui
    Vivone, Gemine
    Rayhana, Rakiba
    Zhang, Di
    REMOTE SENSING, 2023, 15 (06)
  • [36] Vehicle color recognition based on smooth modulation neural network with multi-scale feature fusion
    Hu, Mingdi
    Bai, Long
    Fan, Jiulun
    Zhao, Sirui
    Chen, Enhong
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (03)
  • [37] Solving parametric elliptic interface problems via interfaced operator network
    Wu, Sidi
    Zhu, Aiqing
    Tang, Yifa
    Lu, Benzhuo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [38] Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals
    Griepentrog, JA
    MATHEMATISCHE NACHRICHTEN, 2002, 243 : 19 - 42
  • [39] MSTFDN: Multi-scale transformer fusion dehazing network
    Yan Yang
    Haowen Zhang
    Xudong Wu
    Xiaozhen Liang
    Applied Intelligence, 2023, 53 : 5951 - 5962
  • [40] Multi-Scale Bilateral Attention Fusion Network For Pansharpening
    Guo Z.
    Li J.
    Lei J.
    Liu J.
    Zhou S.
    Wang B.
    Kasabov N.K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 15