Self-Supervised-Enabled Open-Set Cross-Domain Fault Diagnosis Method for Rotating Machinery

被引:5
|
作者
Wang, Li [1 ]
Gao, Yiping [1 ]
Li, Xinyu [1 ]
Gao, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Domain adaptation (DA); fault diagnosis; open-set diagnosis; self-supervised learning; unknown fault identification;
D O I
10.1109/TII.2024.3396335
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Crossing different working conditions is a common scenario in rotating machinery fault diagnosis, which can be solved by cross-domain transfer learning. However, the existing diagnosis methods do not consider possibly new and unknown faults, i.e., open-set fault diagnosis scenarios, which would cause diagnosis performance degradation. To address this issue, in this article, the self-supervised-enabled open-set cross-domain (SEOC) approach is proposed for fault diagnosis of rotary machines under various working conditions. Specifically, open-set risk minimization and self-supervised contrastive learning are proposed to improve distinguishability and stability. A pseudolabel consistency self-training is designed to decrease the domain shift. A novel open-set identification strategy with the designed squeeze confidence rule is developed for unknown- and known-class fault detection. Experiments on three-phase motor and bearing datasets illustrate the superior and efficient performance of the proposed SEOC method. The proposed SEOC framework improves the overall classification accuracies by at least 9%, and the average accuracy of unknown fault identification is more than 97.68% in motor and bearing fault diagnosis.
引用
收藏
页码:10314 / 10324
页数:11
相关论文
共 50 条
  • [21] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [22] An Open-Set Classification Method With Small Samples for Rotating Machinery
    Han, Guangjie
    Xie, Yuhang
    Wang, Zhen
    Zhu, Yuanyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [23] Dual adversarial network for cross-domain open set fault diagnosis
    Zhao, Chao
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221
  • [24] Cross-domain privacy-preserving broad network for fault diagnosis of rotating machinery
    Shi, Mingkuan
    Ding, Chuancang
    Chang, Shuyuan
    Wang, Rui
    Huang, Weiguo
    Zhu, Zhongkui
    ADVANCED ENGINEERING INFORMATICS, 2023, 58
  • [25] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [26] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [27] Transferable graph features-driven cross-domain rotating machinery fault diagnosis
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Ge, Ming-Feng
    Jiang, Xingxing
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [28] Cross-Domain Fault Diagnosis of Rotating Machinery Using Discriminative Feature Attention Network
    Jang, Gye-Bong
    Kim, Jin-Young
    Cho, Sung-Bae
    IEEE ACCESS, 2021, 9 : 99781 - 99793
  • [29] Multiweight Adversarial Open-Set Domain Adaptation Network for Machinery Fault Diagnosis With Unknown Faults
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Ding, Chuancang
    Wang, Jun
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31483 - 31492
  • [30] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhongwei Zhang
    Mingyu Shao
    Chicheng Ma
    Zhe Lv
    Jilei Zhou
    Nonlinear Dynamics, 2022, 108 : 2385 - 2404