ON DYNAMICS OF A SIXTH-ORDER MULTIPLE-ROOT FINDER FOR NONLINEAR EQUATIONS

被引:0
|
作者
Geum, Young hee [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Nonlinear equation; multiple root; conjugacy map; parameter space; 4TH-ORDER FAMILY;
D O I
10.14317/jami.2024.213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. A family of sixth-order multiple-root solver have been developed and the special case of weight function is investigated. The dynamical analysis of selected iterative schemes with uniparametric polynomial weight function are studied using Mo<spacing diaeresis>bius conjugacy map applied to the form ((z - A)(z - B))(m) and the stability surfaces of the strange fixed points for the conjugacy map are displayed. The numerical results are shown through various parameter spaces.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [21] A Triparametric Family of Optimal Fourth-Order Multiple-Root Finders and Their Dynamics
    Kim, Young Ik
    Geum, Young Hee
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [23] Applied Information Technology with a Modified Sixth-Order Convergent Iterative Method for Nonlinear Equations
    Fang, Liang
    Pang, Lin
    MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1343 - 1349
  • [24] A new sixth-order Jarratt-type iterative method for systems of nonlinear equations
    Yaseen, Saima
    Zafar, Fiza
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 585 - 599
  • [25] Qualitative Properties of Solutions to a Class of Sixth-Order Equations
    Danet, Cristian-Paul
    MATHEMATICS, 2023, 11 (06)
  • [26] A Modified Newton-Type Method with Sixth-Order Convergence for Solving Nonlinear Equations
    Sun, Li
    Fang, Liang
    ADVANCES IN COMPUTER SCIENCE, ENVIRONMENT, ECOINFORMATICS, AND EDUCATION, PT IV, 2011, 217 : 470 - +
  • [27] An Efficient Sixth-Order Convergent Newton-type Iterative Method for Nonlinear Equations
    Hu, Zhongyong
    Fang, Liang
    Li, Lianzhong
    Chen, Rui
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2585 - 2588
  • [28] A Modification of Newton-type Method with Sixth-order Convergence for Solving Nonlinear Equations
    Chen, Rui
    Fang, Liang
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1839 - 1843
  • [29] A modified Newton-type method with sixth-order convergence for solving nonlinear equations
    Fang, Liang
    Chen, Tao
    Tian, Li
    Sun, Li
    Chen, Bin
    CEIS 2011, 2011, 15
  • [30] Some new sixth-order variants of Cauchy's method for solving nonlinear equations
    Li Tai-fang
    Li De-sheng
    Xu Zhao-di
    ICMS2009: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 5, 2009, : 323 - 327