Evaluation of GPM IMERG Satellite Precipitation Products in Event-Based Flood Modeling over the Sunshui River Basin in Southwestern China

被引:1
|
作者
Lyu, Xiaoyu [1 ,2 ]
Li, Zhanling [1 ,2 ]
Li, Xintong [1 ,2 ]
机构
[1] China Univ Geosci, Sch Water Resources & Environm, Beijing 100083, Peoples R China
[2] China Univ Geosci, Key Lab Groundwater Conservat MWR, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
GPM IMERG; GDA; HEC-HMS; flood; southwestern China; RAINFALL;
D O I
10.3390/rs16132333
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluates the applicability of hourly Global Precipitation Measurement Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) data for event-based flood modeling in the Sunshui River Basin, southwestern China, using the hydrologic modeling system (HEC-HMS) model. The accuracies of IMERG V6, IMERG V7, and the corrected IMERG V7 satellite precipitation products (SPPs) were assessed against ground rainfall observations. The performance of flood modeling based on the original and the corrected SPPs was then evaluated and compared. In addition, the ability of different numbers (one-eight) of ground stations to correct IMERG V7 data for flood modeling was investigated. The results indicate that IMERG V6 data generally underestimate the actual rainfall of the study area, while IMERG V7 and the corrected IMERG V7 data using the geographical discrepancy analysis (GDA) method overestimate rainfall. The corrected IMERG V7 data performed best in capturing the actual rainfall events, followed by IMERG V7 and IMERG V6 data, respectively. The IMERG V7-generated flood hydrographs exhibited the same trend as those of the measured data, yet the former generally overestimated the flood peak due to its overestimation of rainfall. The corrected IMERG V7 data led to superior event-based flood modeling performance compared to the other datasets. Furthermore, when the number of ground stations used to correct the IMERG V7 data in the study area was greater than or equal to four, the flood modeling performance was satisfactory. The results confirm the applicability of IMERG V7 data for fine time scales in event-based flood modeling and reveal that using the GDA method to correct SPPs can greatly enhance the accuracy of flood modeling. This study can act as a basis for flood research in data-scarce areas.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China
    Fang, Jian
    Yang, Wentao
    Luan, Yibo
    Du, Juan
    Lin, Aiwen
    Zhao, Lin
    ATMOSPHERIC RESEARCH, 2019, 223 : 24 - 38
  • [22] Performance Evaluation of GPM IMERG Precipitation Products over the Tropical Oceans Using Buoys
    Pradhan, Rajani kumar
    Markonis, Yannis
    JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (10) : 1755 - 1770
  • [23] Comparative Evaluation of the GPM IMERG Early, Late, and Final Hourly Precipitation Products Using the CMPA Data over Sichuan Basin of China MDPI
    Tang, Shunxian
    Li, Rui
    He, Jianxin
    Wang, Hao
    Fan, Xingang
    Yao, Shuangyu
    WATER, 2020, 12 (02)
  • [24] Evaluation and Hydrological Validation of GPM Precipitation Products over the Nanliu River Basin, Beibu Gulf
    Tong, Kai
    Zhao, Yinjun
    Wei, Yongping
    Hu, Baoqing
    Lu, Yuan
    WATER, 2018, 10 (12):
  • [25] Evaluation of GPM IMERG and error sources for tropical cyclone precipitation over eastern China
    Chen, Fengjiao
    Wang, Rui
    Liu, Peng
    Yu, Lu
    Feng, Yan
    Zheng, Xiaoyi
    Gao, Jinlan
    JOURNAL OF HYDROLOGY, 2023, 627
  • [26] Assessment of Four Satellite-Based Precipitation Products Over the Pearl River Basin, China
    Xia, Xiaolin
    Liu, Yangxiaoyue
    Jing, Wenlong
    Yao, Ling
    IEEE ACCESS, 2021, 9 : 97729 - 97746
  • [27] Event-Based Evaluation of the GPM Multisatellite Merged Precipitation Product From 2014 to 2018 Over China: Methods and Results
    Li, Runze
    Wang, Kaicun
    Qi, Dan
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (01)
  • [28] A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China
    Yu, Linfei
    Leng, Guoyong
    Python, Andre
    WEATHER AND CLIMATE EXTREMES, 2022, 36
  • [29] Evaluation of drought monitoring in China using IMERG satellite precipitation products
    Wei L.
    Jiang S.
    Ren L.
    Zhang L.
    Wang M.
    Jiang, Shanhu (hik0216@163.com), 1600, Chinese Society of Agricultural Engineering (37): : 161 - 169
  • [30] Evaluation of Satellite-Based Precipitation Products over Complex Topography in Mountainous Southwestern China
    Tang, Xuan
    Li, Hongxia
    Qin, Guanghua
    Huang, Yuanyuan
    Qi, Yongliang
    REMOTE SENSING, 2023, 15 (02)