Deep Learning-Driven Insights into Cell Migration Dynamics

被引:0
|
作者
Shrestha, Shruti [1 ]
Jiang, Yi [1 ]
Edirisinghe, Neranjan Suranga [1 ]
机构
[1] Georgia State Univ, Atlanta, GA 30303 USA
基金
美国国家科学基金会;
关键词
Deep Learning; Computer Vision; Autoencoders; Dimensionality Reduction; Medical Imaging;
D O I
10.1145/3626203.3670626
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach to discovering migrating vs. nonmigrating cells by implementing variational autoencoder architecture and training across a high-performance computing platform. The process workflow undergoes data preprocessing, training, and inferencing a deep learning architecture. The discussion covers the implementation of various hyperparameter testing throughout the study, along with the findings on training deep learning on multi-gpu vs. multi-node systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing
    Jianjing Zhang
    Robert X.Gao
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 65 - 85
  • [22] Deep learning-driven scaffold hopping in the discovery of Akt kinase inhibitors
    Wang, Zuqin
    Ran, Ting
    Xu, Fang
    Wen, Chang
    Song, Shukai
    Zhou, Yang
    Chen, Hongming
    Lu, Xiaoyun
    CHEMICAL COMMUNICATIONS, 2021, 57 (81) : 10588 - 10591
  • [23] Deep Learning-Driven Optimization Strategies for Teaching Decisions in Smart Classrooms
    Lin, Jia
    International Journal of Interactive Mobile Technologies, 2024, 18 (15) : 63 - 77
  • [24] Deep Learning-Driven Anomaly Detection for Green IoT Edge Networks
    Bushehri, Ahmad Shahnejat
    Amirnia, Ashkan
    Belkhiri, Adel
    Keivanpour, Samira
    de Magalhaes, Felipe Gohring
    Nicolescu, Gabriela
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (01): : 498 - 513
  • [25] Deep Learning-driven classification of external DICOM studies for PACS archiving
    Jonske, Frederic
    Dederichs, Maximilian
    Kim, Moon-Sung
    Keyl, Julius
    Egger, Jan
    Umutlu, Lale
    Forsting, Michael
    Nensa, Felix
    Kleesiek, Jens
    EUROPEAN RADIOLOGY, 2022, 32 (12) : 8769 - 8776
  • [26] Deep Learning-Driven Innovative Model for Generating Functional Knowledge Units
    Pan, Qiangang
    Hu Yahong
    Xie Youbai
    Meng Xianghui
    Zhang Yilun
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT IV, 2024, 14807 : 236 - 252
  • [27] Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing
    Zhang, Jianjing
    Gao, Robert X.
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [28] Modelling of Marburg virus transmission dynamics: a deep learning-driven approach with the effect of quarantine and health awareness interventions
    Mustafa, Noreen
    Ul Rahman, Jamshaid
    Omame, Andrew
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (06) : 7337 - 7357
  • [29] Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes
    Li, Zhengda
    Chen, Xuyang
    Wang, Yang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (03) : 1672 - 1690
  • [30] Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing
    Jianjing Zhang
    Robert X. Gao
    Chinese Journal of Mechanical Engineering, 2021, 34