Prospects of silicide contacts for silicon quantum electronic devices

被引:2
|
作者
Tsoukalas, K. [1 ]
Schupp, F. [1 ]
Sommer, L. [1 ]
Bouquet, I. [2 ]
Mergenthaler, M. [1 ]
Paredes, S. [1 ]
Trivino, N. Vico [1 ]
Luisier, M. [1 ]
Salis, G. [1 ]
Harvey-Collard, P. [3 ]
Zumbuhl, D.
Fuhrer, A. [1 ]
机构
[1] IBM Res Europe Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
KINETICS; STATES; SI;
D O I
10.1063/5.0213131
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metal contacts in semiconductor quantum electronic devices can offer advantages over doped contacts, primarily due to their reduced fabrication complexity and lower temperature requirements during processing. Some metals can also facilitate ambipolar device operation or form superconducting contacts. Furthermore, a sharp metal-semiconductor interface allows for contact placement in close proximity to the active device area avoiding damage caused by dopant implantation. However, in the case of gate-defined quantum dots in intrinsic silicon, the formation of a Schottky barrier at the silicon-metal interface can lead to large, nonlinear contact resistances at cryogenic temperatures. We investigate this issue by examining hole transport through metal oxide-semiconductor transistors with platinum silicide contacts on intrinsic silicon substrates. We extract the contact and channel resistances as a function of temperature and improve the cryogenic conductance of the device by more than an order of magnitude by implementing meander-shaped contacts. In addition, we observe signatures of enhanced transport through localized defect states, which we attribute to platinum clusters in the depletion region of the Schottky contacts that form during the silicidation process. These results showcase the prospects of silicide contacts in the context of cryogenic quantum devices and address associated challenges.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] PROSPECTS OF QUANTUM FUNCTIONAL DEVICES
    ISMAIL, K
    CANADIAN JOURNAL OF PHYSICS, 1991, 69 (3-4) : 432 - 437
  • [42] Improved ohmic contacts for SiC nanowire devices with nickel-silicide
    Bano, Edwige (Edwige.Bano@phelma.grenoble-inp.fr), 1600, Elsevier Ltd (650):
  • [43] Structural and electrical characterisation of titanium and nickel silicide contacts on silicon carbide
    La Via, F
    Roccaforte, F
    Makhtari, A
    Raineri, V
    Musumeci, P
    Calcagno, L
    MICROELECTRONIC ENGINEERING, 2002, 60 (1-2) : 269 - 282
  • [44] MECHANISM OF CURRENT TRANSPORT IN PLATINUM SILICIDE-SILICON CONTACTS.
    Strikha, V.I.
    Il'Chenko, V.V.
    Buzaneva, Ye.V.
    Soviet journal of communications technology & electronics, 1985, 30 (09): : 26 - 29
  • [46] Silicon-nanowire transistors with intruded nickel-silicide contacts
    Weber, Walter M.
    Geelhaar, Lutz
    Graham, Andrew P.
    Unger, Eugen
    Duesberg, Georg S.
    Liebau, Maik
    Pamler, Werner
    Cheze, Caroline
    Riechert, Henning
    Lugli, Paolo
    Kreupl, Franz
    NANO LETTERS, 2006, 6 (12) : 2660 - 2666
  • [47] Nickel Silicide Metallization for Passivated Tunneling Contacts for Silicon Solar Cells
    Marshall, Alexander
    Florent, Karine
    Tapriya, Astha
    Lee, Benjamin G.
    Kurinec, Santosh K.
    Young, David L.
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2479 - 2482
  • [48] Dual-gate silicon nanowire transistors with nickel silicide contacts
    Appenzeller, J.
    Knoch, J.
    Tutuc, E.
    Reuter, M.
    Guha, S.
    2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, : 302 - +
  • [49] Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts
    Habicht, S.
    Zhao, Q. T.
    Feste, S. F.
    Knoll, L.
    Trellenkamp, S.
    Ghyselen, B.
    Mantl, S.
    NANOTECHNOLOGY, 2010, 21 (10)
  • [50] Kelvin test structure modeling of metal-silicide-silicon contacts
    Reeves, GK
    Holland, AS
    Leech, PW
    ADVANCED INTERCONNECTS AND CONTACT MATERIALS AND PROCESSES FOR FUTURE INTEGRATED CIRCUITS, 1998, 514 : 363 - 368