Prospects of silicide contacts for silicon quantum electronic devices

被引:2
|
作者
Tsoukalas, K. [1 ]
Schupp, F. [1 ]
Sommer, L. [1 ]
Bouquet, I. [2 ]
Mergenthaler, M. [1 ]
Paredes, S. [1 ]
Trivino, N. Vico [1 ]
Luisier, M. [1 ]
Salis, G. [1 ]
Harvey-Collard, P. [3 ]
Zumbuhl, D.
Fuhrer, A. [1 ]
机构
[1] IBM Res Europe Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
KINETICS; STATES; SI;
D O I
10.1063/5.0213131
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metal contacts in semiconductor quantum electronic devices can offer advantages over doped contacts, primarily due to their reduced fabrication complexity and lower temperature requirements during processing. Some metals can also facilitate ambipolar device operation or form superconducting contacts. Furthermore, a sharp metal-semiconductor interface allows for contact placement in close proximity to the active device area avoiding damage caused by dopant implantation. However, in the case of gate-defined quantum dots in intrinsic silicon, the formation of a Schottky barrier at the silicon-metal interface can lead to large, nonlinear contact resistances at cryogenic temperatures. We investigate this issue by examining hole transport through metal oxide-semiconductor transistors with platinum silicide contacts on intrinsic silicon substrates. We extract the contact and channel resistances as a function of temperature and improve the cryogenic conductance of the device by more than an order of magnitude by implementing meander-shaped contacts. In addition, we observe signatures of enhanced transport through localized defect states, which we attribute to platinum clusters in the depletion region of the Schottky contacts that form during the silicidation process. These results showcase the prospects of silicide contacts in the context of cryogenic quantum devices and address associated challenges.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Prospects of silicide contacts for silicon quantum electronic devices (125, 013501 2024)
    Tsoukalas, K.
    Schupp, F.
    Sommer, L.
    Bouquet, I.
    Mergenthaler, M.
    Paredes, S.
    Trivino, N. Vico
    Luisier, M.
    Salis, G.
    Harvey-Collard, P.
    Zumbuhl, D.
    Fuhrer, A.
    APPLIED PHYSICS LETTERS, 2024, 125 (03)
  • [2] PLATINUM SILICIDE CONTACTS TO SILICON SEMICONDUCTOR DEVICES
    KAMOSHIDA, M
    OKADA, T
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (08): : 152 - +
  • [3] PLATINUM-SILICIDE CONTACTS TO SILICON SEMICONDUCTOR DEVICES
    KAMOSHIDA, M
    OKADA, T
    NEC RESEARCH & DEVELOPMENT, 1970, (16): : 24 - +
  • [4] Ab initio quantum transport simulation of silicide-silicon contacts
    Gao, Qun
    Guo, Jing
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (01)
  • [5] SILICIDE CONTACTS FOR SHALLOW JUNCTION DEVICES
    WITTMER, M
    THIN SOLID FILMS, 1983, 107 (01) : 99 - 110
  • [6] THIN PALLADIUM SILICIDE CONTACTS TO SILICON
    KRITZINGER, S
    TU, KN
    JOURNAL OF APPLIED PHYSICS, 1981, 52 (01) : 305 - 310
  • [7] Electronic devices based on quantum wires: Prospects and problems
    Obukhov, IA
    PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEW AND SHORT NOTES TO NANOMEETING '97, 1997, : 322 - 325
  • [8] Electronic states in silicon quantum dot devices
    Hada, Y
    Eto, M
    PHYSICA STATUS SOLIDI C - CONFERENCES AND CRITICAL REVIEWS, VOL 2, NO 8, 2005, 2 (08): : 3035 - 3038
  • [9] NOISE PROPERTIES OF SILICIDE SILICON SCHOTTKY CONTACTS
    GUTTLER, HH
    WERNER, JH
    JOURNAL OF ELECTRONIC MATERIALS, 1990, 19 (07) : 49 - 49
  • [10] PROPERTIES OF PALLADIUM SILICIDE-SILICON CONTACTS
    KIRCHER, CJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (03) : C100 - &