The Role of Emodin in the Treatment of Bladder Cancer Based on Network Pharmacology and Experimental Verification

被引:0
|
作者
Liu, Fule [1 ,2 ]
Li, Jianghao [1 ,2 ]
Zhou, Boruo [1 ,2 ]
Shen, Yang [3 ]
Tang, Jingyuan [2 ]
Han, Jie [2 ]
Chen, Changpeng [1 ,2 ]
Shao, Kang [1 ,2 ]
Chen, Haojie [1 ,2 ]
Yuan, Lin [2 ]
机构
[1] Nanjing Univ Chinese Med, Clin Med Coll 1, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Jiangsu Prov Hosp Chinese Med, Dept Urol, Affiliated Hosp, Nanjing 210004, Peoples R China
[3] Nanjing Univ Chinese Med, Jiangsu Prov Chinese Med Hosp 2, Dept Urol, Affiliated Hosp 2, Nanjing 210017, Jiangsu, Peoples R China
关键词
Bladder cancer; emodin; network pharmacology; molecular docking; molecular mechanism; experimental verification; IN-VITRO; APOPTOSIS; CELLS; EGFR;
D O I
10.2174/0113862073294990240122140121
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background and Purpose Emodin, a compound derived from rhubarb and various traditional Chinese medicines, exhibits a range of pharmacological actions, including anti-inflammatory, antiviral, and anticancer properties. Nevertheless, its pharmacological impact on bladder cancer (BLCA) and the underlying mechanism are still unclear. This research aimed to analyze the pharmacological mechanisms of Emodin against BLCA using network pharmacology analysis and experimental verification.Methods Initially, network pharmacology was employed to identify core targets and associated pathways affected by Emodin in bladder cancer. Subsequently, the expression of key targets in normal bladder tissues and BLCA tissues was assessed by searching the GEPIA and HPA databases. The binding energy between Emodin and key targets was predicted using molecular docking. Furthermore, in vitro experiments were carried out to confirm the predictions made with network pharmacology.Results Our analysis identified 148 common genes targeted by Emodin and BLCA, with the top ten target genes including TP53, HSP90AA1, EGFR, MYC, CASP3, CDK1, PTPN11, EGF, ESR1, and TNF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated a significant correlation between Emodin and the PI3K-AKT pathway in the context of BLCA. Molecular docking investigations revealed a strong affinity between Emodin and critical target proteins. In vitro experiments demonstrated that Emodin inhibits T24 proliferation, migration, and invasion while inducing cell apoptosis. The findings also indicated that Emodin reduces both PI3K and AKT protein and mRNA expression, suggesting that Emodin may mitigate BLCA by modulating the PI3K-AKT signaling pathway.Conclusion This study integrates network pharmacology with in vitro experimentation to elucidate the potential mechanisms underlying the action of Emodin against BLCA. The results of this research enhance our understanding of the pharmacological mechanisms by which Emodin may be employed in treating BLCA.
引用
收藏
页码:1661 / 1675
页数:15
相关论文
共 50 条
  • [41] Prediction of the potential mechanism of compound gingerol against liver cancer based on network pharmacology and experimental verification
    Su, Min
    Wang, Xueqin
    Cao, Gang
    Sun, Li
    Ho, Rodney J. Y.
    Han, Yanquan
    Hong, Yan
    Wu, Deling
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2022, 74 (06) : 869 - 886
  • [42] Regulatory mechanism of Scutellaria baicalensis Georgi on bone cancer pain based on network pharmacology and experimental verification
    Wang, Aitao
    Guo, Dongmei
    Cheng, Hongyu
    Jiang, Hui
    Liu, Xiaojuan
    Tie, Muer
    PEERJ, 2022, 10
  • [43] The potential mechanism of ursolic acid in the treatment of bladder cancer based on network pharmacology and molecular docking
    Huang, Xiao-Long
    Sun, Yan
    Wen, Peng
    Pan, Jun-Cheng
    He, Wei-Yang
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2024, 52 (03)
  • [44] Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification
    Zhang, Jie
    Qi, Cong
    Li, He
    Ding, Chenhuan
    Wang, Libo
    Wu, Hongjin
    Dai, Weiwei
    Wang, Chenglong
    MEDICINE, 2023, 102 (51)
  • [45] Exploration of the Potential Mechanism of Tao Hong Si Wu Decoction for the Treatment of Breast Cancer Based on Network Pharmacology and In Vitro Experimental Verification
    Huang, Shi
    Chen, Yan
    Pan, Lingyu
    Fei, Changyi
    Wang, Ni
    Chu, Furui
    Peng, Daiyin
    Duan, Xianchun
    Wang, Yongzhong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [46] Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation
    Shang, Luorui
    Wang, Yichong
    Li, Jinxiao
    Zhou, Fangyuan
    Xiao, Kunmin
    Liu, Yuhan
    Zhang, Mengqi
    Wang, Shuhan
    Yang, Shenglan
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 302
  • [47] The mechanism of polyphyllin in the treatment of gastric cancer was verified based on network pharmacology and experimental validation
    Lu, Doudou
    Yuan, Ling
    Ma, Xiaoyan
    Meng, Fandi
    Xu, Duojie
    Jia, Shumin
    Wang, Zhaozhao
    Li, Yahong
    Zhang, Zhe
    Nan, Yi
    HELIYON, 2024, 10 (10)
  • [48] Exploring the Mechanism of Isoforskolin against Asthma Based on Network Pharmacology and Experimental Verification
    Fang, Yan
    Sun, Shibo
    Xiao, Chuang
    Li, Min
    Zheng, Yuanyuan
    Zu, Anju
    Luo, Zhuang
    CRITICAL REVIEWS IN IMMUNOLOGY, 2024, 44 (06) : 87 - 98
  • [49] Mechanism of Antipyretic Effect of Saposhnikoviae Radix Based on Network Pharmacology and Experimental Verification
    Wang, Taidong
    Huang, Xiaowei
    Huang, Jian
    Lv, Guangfu
    Lin, Zhe
    PAKISTAN JOURNAL OF ZOOLOGY, 2024, 56 (01) : 385 - 393
  • [50] Mechanism of ligusticum cycloprolactam against neuroinflammation based on network pharmacology and experimental verification
    Gao, Juan
    Su, Gang
    Chen, Wei
    Wu, Qionghui
    Liu, Junxi
    Liu, Jifei
    Chai, Miao
    Dong, Ying
    Wang, He
    Chen, Lixia
    Zhang, Zhenchang
    Wang, Manxia
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2023, 50 (08) : 647 - 663