Testing-based Black-box Extraction of Simple Models from RNNs and Transformers

被引:0
|
作者
Muskardin, Edi [1 ,2 ]
Tappler, Martin [1 ,2 ]
Aichernig, Bernhard K. [2 ]
机构
[1] Graz Univ Technol, Silicon Austria Labs, SAL DES Lab, Graz, Austria
[2] Graz Univ Technol, Graz, Austria
关键词
Model extraction; Active automata learning; RNN; Transformers;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this technical report, we outline the testing-based black-box method used to extract simple and interpretable models from RNNs and transformers. Our work was done in the scope of the TAYSIR competition, in which it won the first place.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 50 条
  • [41] ONEMAX in Black-Box Models with Several Restrictions
    Doerr, Carola
    Lengler, Johannes
    ALGORITHMICA, 2017, 78 (02) : 610 - 640
  • [42] Auditing black-box models for indirect influence
    Adler, Philip
    Falk, Casey
    Friedler, Sorelle A.
    Nix, Tionney
    Rybeck, Gabriel
    Scheidegger, Carlos
    Smith, Brandon
    Venkatasubramanian, Suresh
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 54 (01) : 95 - 122
  • [43] Demystifying Black-box Models with Symbolic Metamodels
    Alaa, Ahmed M.
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [44] Auditing Black-box Models for Indirect Influence
    Adler, Philip
    Falk, Casey
    Friedler, Sorelle A.
    Rybeck, Gabriel
    Scheidegger, Carlos
    Smith, Brandon
    Venkatasubramanian, Suresh
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1 - 10
  • [45] Regularizing Black-box Models for Improved Interpretability
    Plumb, Gregory
    Al-Shedivat, Maruan
    Cabrera, Angel Alexander
    Perer, Adam
    Xing, Eric
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [46] BLACK-BOX MODELS FOR LINEAR INTEGRATED CIRCUITS
    MURRAYLA.MA
    IEEE TRANSACTIONS ON EDUCATION, 1969, E 12 (03) : 170 - &
  • [47] Learning Groupwise Explanations for Black-Box Models
    Gao, Jingyue
    Wang, Xiting
    Wang, Yasha
    Yan, Yulan
    Xie, Xing
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2396 - 2402
  • [48] Explaining Black-box Classification Models with Arguments
    Amgoud, Leila
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 791 - 795
  • [49] Adversarial Eigen Attack on Black-Box Models
    Zhou, Linjun
    Cui, Peng
    Zhang, Xingxuan
    Jiang, Yinan
    Yang, Shiqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15233 - 15241
  • [50] Auditing black-box models for indirect influence
    Philip Adler
    Casey Falk
    Sorelle A. Friedler
    Tionney Nix
    Gabriel Rybeck
    Carlos Scheidegger
    Brandon Smith
    Suresh Venkatasubramanian
    Knowledge and Information Systems, 2018, 54 : 95 - 122