Low-rank tensor regression for selection of grouped variables

被引:0
|
作者
Chen, Yang [1 ]
Luo, Ziyan [1 ]
Kong, Lingchen [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternating minimization; Group selection; Low-rankness; Orthogonal decomposition; Tensor regression; DECOMPOSITIONS; SLOPE;
D O I
10.1016/j.jmva.2024.105339
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Low-rank tensor regression (LRTR) problems are widely studied in statistics and machine learning, in which the regressors are generally grouped by clustering strongly correlated variables or variables corresponding to different levels of the same predictive factor in many practical applications. By virtue of the idea of group selection in the classical linear regression framework, we propose an LRTR method for adaptive selection of grouped variables in this article, which is formulated as a group SLOPE penalized low-rank, orthogonally decomposable tensor optimization problem. Moreover, we introduce the notion of tensor group false discovery rate (TgFDR) to measure the group selection performance. The proposed regression method provably controls TgFDR and achieves the asymptotically minimax estimate under the assumption that variable groups are orthogonal to each other. Finally, an alternating minimization algorithm is developed for efficient problem resolution. We demonstrate the performance of our proposed method in group selection and low-rank estimation through simulation studies and real dataset analysis.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [22] Low-rank feature selection for multi-view regression
    Rongyao Hu
    Debo Cheng
    Wei He
    Guoqiu Wen
    Yonghua Zhu
    Jilian Zhang
    Shichao Zhang
    Multimedia Tools and Applications, 2017, 76 : 17479 - 17495
  • [23] Low-rank feature selection for multi-view regression
    Hu, Rongyao
    Cheng, Debo
    He, Wei
    Wen, Guoqiu
    Zhu, Yonghua
    Zhang, Jilian
    Zhang, Shichao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (16) : 17479 - 17495
  • [24] Errors-in-variables Frechet Regression with Low-rank Covariate Approximation
    Song, Dogyoon
    Han, Kyunghee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [25] Model selection and estimation in regression with grouped variables
    Yuan, M
    Lin, Y
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 49 - 67
  • [26] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [27] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [28] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [29] NONPARAMETRIC LOW-RANK TENSOR IMPUTATION
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 876 - 879
  • [30] MULTIRESOLUTION LOW-RANK TENSOR FORMATS
    Mickelin, Oscar
    Karaman, Sertac
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1086 - 1114