Retrieval of sea ice thickness from FY-3E data using Random Forest method

被引:2
|
作者
Li, Hongying [1 ]
Yan, Qingyun [1 ]
Huang, Weimin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
GNSS-R; SIT; FY-3E; Random forest; SMOS; GPS SIGNALS; DIELECTRIC-CONSTANT; SCATTERING; SURFACE; MODEL;
D O I
10.1016/j.asr.2024.03.061
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this study, we employ a Random Forest approach to estimate sea ice thickness (SIT) using Fengyun-3E (FY -3E) and Soil Moisture Ocean Salinity (SMOS) data. This method relies on four input parameters: incidence angle ( h), reflectivity ( C ), sea ice salinity ( S ), and sea ice temperature ( T ). In addition, FY -3E can receive both Global Positioning System (GPS) and Beidou Navigation Satellite System (BDS) reflected signals. Evaluation for the Arctic region based on data spanning from October 2022 to April 2023 reveals that the proposed models trained on GPS and BDS signals from FY -3E achieve high consistency and low error. Take GPS signals as an example, coefficients of determination are 0.97 and 0.91 and mean absolute errors are 0.019 m and 0.032 m for the training and test sets, respectively. In general, SIT inversion based on GPS signals slightly exhibits a higher accuracy than that based on BDS signals, but both approaches display high performances. The areas with the highest accuracy of SIT estimation based on GPS and BDS signals are the Shelikhov Bay and the Okhotsk Sea, followed by the Bering Sea and the Bering Strait. We conclude that machine learning and data fusion are effective for SIT estimation. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条
  • [41] Evaluation of the FY-3E microwave temperature sounding data assimilation on forecasting Typhoon Chanthu (2021)
    Yu Huang
    Juan Li
    Zhengkun Qin
    Meteorology and Atmospheric Physics, 2023, 135
  • [42] Comparative Analysis of SWH Retrieval Between BDS-R and GPS-R Utilizing FY-3E/GNOS-II Data
    Yu, Hui
    Du, Qifei
    Xia, Junming
    Huang, Feixiong
    Yin, Cong
    Meng, Xiaofeng
    Bai, Weihua
    Sun, Yueqiang
    Wang, Xianyi
    Duan, Lichang
    Sun, Yixuan
    Wang, Guanyi
    Du, Yunlong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 6520 - 6531
  • [43] Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea
    Iwamoto, K.
    Ohshima, K. I.
    Tamura, T.
    Nihashi, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (02) : 468 - 489
  • [44] Uncertainties in Antarctic sea-ice thickness retrieval from ICESat
    Kern, Stefan
    Spreen, Gunnar
    ANNALS OF GLACIOLOGY, 2015, 56 (69) : 107 - 119
  • [45] The flat-field method based on rotated images for FY-3E/X-EUVI
    Ding, Guangxing
    Wu, Kun
    He, Lingping
    Chen, Bo
    Liu, Fei
    FRONTIERS IN PHYSICS, 2022, 10
  • [46] First PWV Retrieval Using MERSI-LL Onboard FY-3E and Cross Validation With Co-Platform Occultation and Ground GNSS
    Jiang, Nan
    Wu, Yuhao
    Li, Song
    Xu, Yan
    Wang, Yubo
    Xu, Tianhe
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (08)
  • [47] Spaceborne GNSS Reflectometry With Galileo Signals on FY-3E/GNOS-II: Measurements, Calibration, and Wind Speed Retrieval
    Huang, Feixiong
    Xia, Junming
    Yin, Cong
    Zhai, Xiaochun
    Yang, Guanglin
    Bai, Weihua
    Sun, Yueqiang
    Du, Qifei
    Wang, Xianyi
    Qiu, Tongsheng
    Cai, Yuerong
    Duan, Lichang
    Xu, Na
    Liao, Mi
    Hu, Xiuqing
    Zhang, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [48] Satellite Sea Surface Salinity Retrieval Using Random Forest Model
    Liu Q.
    Meng S.
    Xu M.
    Li H.
    Liu H.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (09): : 1538 - 1545
  • [49] SEA ICE DETECTION WITH FY3E GNOS II GNSS REFLECTOMETRY
    Yin, Cong
    Xia, Junming
    Huang, Feixiong
    Li, Wei
    Bai, Weihua
    Sun, Yueqiang
    Liu, Congliang
    Yang, Guanglin
    Hu, Xiuqing
    Xiao, Xianjun
    Yan, Feng
    Zhai, Xiaochun
    Du, Qifei
    Wang, Xianyi
    Cai, Yuerong
    Duan, Lichang
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 36 - 38
  • [50] Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data
    Bai, Linyan
    Xue, Yong
    Cao, Chunxiang
    Feng, Jianzhong
    Zhang, Hao
    Guang, Jie
    Wang, Ying
    Li, Yingjie
    Mei, Linlu
    Ai, Jianwen
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840