Retrieval of sea ice thickness from FY-3E data using Random Forest method

被引:2
|
作者
Li, Hongying [1 ]
Yan, Qingyun [1 ]
Huang, Weimin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
GNSS-R; SIT; FY-3E; Random forest; SMOS; GPS SIGNALS; DIELECTRIC-CONSTANT; SCATTERING; SURFACE; MODEL;
D O I
10.1016/j.asr.2024.03.061
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this study, we employ a Random Forest approach to estimate sea ice thickness (SIT) using Fengyun-3E (FY -3E) and Soil Moisture Ocean Salinity (SMOS) data. This method relies on four input parameters: incidence angle ( h), reflectivity ( C ), sea ice salinity ( S ), and sea ice temperature ( T ). In addition, FY -3E can receive both Global Positioning System (GPS) and Beidou Navigation Satellite System (BDS) reflected signals. Evaluation for the Arctic region based on data spanning from October 2022 to April 2023 reveals that the proposed models trained on GPS and BDS signals from FY -3E achieve high consistency and low error. Take GPS signals as an example, coefficients of determination are 0.97 and 0.91 and mean absolute errors are 0.019 m and 0.032 m for the training and test sets, respectively. In general, SIT inversion based on GPS signals slightly exhibits a higher accuracy than that based on BDS signals, but both approaches display high performances. The areas with the highest accuracy of SIT estimation based on GPS and BDS signals are the Shelikhov Bay and the Okhotsk Sea, followed by the Bering Sea and the Bering Strait. We conclude that machine learning and data fusion are effective for SIT estimation. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 144
页数:15
相关论文
共 50 条
  • [1] Retrieval of sea ice thickness using FY-3E/GNOS-II data
    Xie, Yunjian
    Yan, Qingyun
    SATELLITE NAVIGATION, 2024, 5 (01):
  • [2] Stand-Alone Retrieval of Sea Ice Thickness From FY-3E GNOS-R Data
    Xie, Yunjian
    Yan, Qingyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [3] First Results of Antarctic Sea Ice Classification Using Spaceborne Dual-Frequency Scatterometer FY-3E WindRAD
    Zhai, Xiaochun
    Tian, Shengrong
    Ye, Yufang
    Cao, Guangzhen
    Chen, Lin
    Xu, Na
    Zheng, Zhaojun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [4] First Results from the WindRAD Scatterometer on Board FY-3E: Data Analysis, Calibration and Wind Retrieval Evaluation
    Li, Zhen
    Verhoef, Anton
    Stoffelen, Ad
    Shang, Jian
    Dou, Fangli
    REMOTE SENSING, 2023, 15 (08)
  • [5] Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data
    Yan, Zhongnan
    Pang, Xiaoping
    Ji, Qing
    Chen, Yizhuo
    Luo, Chongxin
    Fan, Pei
    Liang, Zeyu
    ACTA OCEANOLOGICA SINICA, 2023, 42 (12) : 105 - 117
  • [6] Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data
    Zhongnan Yan
    Xiaoping Pang
    Qing Ji
    Yizhuo Chen
    Chongxin Luo
    Pei Fan
    Zeyu Liang
    Acta Oceanologica Sinica, 2023, 42 : 105 - 117
  • [7] Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data
    Zhongnan Yan
    Xiaoping Pang
    Qing Ji
    Yizhuo Chen
    Chongxin Luo
    Pei Fan
    Zeyu Liang
    ActaOceanologicaSinica, 2023, 42 (12) : 105 - 117
  • [8] Retrieval of snow depth on the Antarctic Sea Ice from the FY-3B MWRI satellite data
    Yan Z.
    Pang X.
    Ji Q.
    Xiao Z.
    National Remote Sensing Bulletin, 2023, 27 (04) : 986 - 997
  • [9] Retrieval of Arctic Sea Ice Motion from FY-3D/MWRI Brightness Temperature Data
    Chen, Haihua
    Ni, Kun
    Liu, Jun
    Li, Lele
    REMOTE SENSING, 2023, 15 (17)
  • [10] Improving GNSS-R Sea Surface Wind Speed Retrieval from FY-3E Satellite Using Multi-task Learning and Physical Information
    Zhou, Zhenxiong
    Duan, Boheng
    Ren, Kaijun
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 357 - 369