Contribution of vibrational excited molecular nitrogen to ammonia synthesis using an atmospheric-pressure plasma jet

被引:1
|
作者
Miyake, Atsufumi [1 ]
Shirai, Naoki [1 ]
Sasaki, Koichi [1 ]
机构
[1] Hokkaido Univ, Div Appl Quantum Sci & Engn, Sapporo 0608628, Japan
关键词
DISSOCIATIVE ADSORPTION; RATE COEFFICIENTS; HYDROGEN STORAGE; ATOMIC NITROGEN; ENERGY; N-2; DISCHARGES; SURFACE; CATALYSTS; KINETICS;
D O I
10.1063/5.0208655
中图分类号
O59 [应用物理学];
学科分类号
摘要
The contribution of atomic nitrogen is fairly possible in plasma-assisted catalytic synthesis of ammonia since it has high adsorption probabilities on solid surfaces. On the other hand, recently, the contribution of vibrational excited molecular nitrogen to ammonia synthesis has been discussed. In this work, we compared the fluxes of atomic nitrogen and vibrational excited molecular nitrogen with the rate of plasma-assisted ammonia synthesis. We employed an atmospheric-pressure nitrogen plasma jet, and the spatial afterglow of the plasma jet and a hydrogen flow irradiated the surface of a ruthenium catalyst. The fluxes of atomic nitrogen and vibrational excited molecular nitrogen were measured by two-photon absorption laser-induced fluorescence spectroscopy and laser Raman scattering, respectively. The synthesis rate of ammonia had a positive correlation with the flux of vibrational excited molecular nitrogen, while the variation of the synthesis rate with the gas flow rate was opposite to the flux of atomic nitrogen. The experimental results indicate the contribution of vibrational excited molecular nitrogen to the synthesis of ammonia using the atmospheric-pressure plasma, where the flux of vibrational excited molecular nitrogen is more than four orders of magnitude higher than that of atomic nitrogen. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).https://doi.org/10.1063/5.0208655
引用
收藏
页数:14
相关论文
共 50 条
  • [41] STUDY OF THE NO SYNTHESIS IN A MICROWAVE PLASMA AT ATMOSPHERIC-PRESSURE
    TARAS, P
    DUSEK, V
    VYSKOCIL, J
    ACTA PHYSICA SLOVACA, 1985, 35 (02) : 112 - 117
  • [42] Atmospheric-pressure plasma synthesis of carbon nanotubes
    Nozaki, Tomohiro
    Yoshida, Shinpei
    Karatsu, Takuya
    Okazaki, Ken
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (17)
  • [43] Cold atmospheric-pressure air plasma jet: Physics and opportunities
    Lu, XinPei
    Liu, DaWei
    Xian, YuBin
    Nie, LanLan
    Cao, YingGuang
    He, GuangYuan
    PHYSICS OF PLASMAS, 2021, 28 (10)
  • [44] Deposition of silicon dioxide films with an atmospheric-pressure plasma jet
    Babayan, SE
    Jeong, JY
    Tu, VJ
    Park, J
    Selwyn, GS
    Hicks, RF
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03): : 286 - 288
  • [45] Hydrophilic patterning of superhydrophobic surfaces by atmospheric-pressure plasma jet
    Chen, Faze
    Xu, Wenji
    Lu, Yao
    Song, Jinlong
    Huang, Shuai
    Wang, Long
    Parkin, Ivan P.
    Liu, Xin
    MICRO & NANO LETTERS, 2015, 10 (02): : 105 - 108
  • [46] Jet-to-jet interactions in atmospheric-pressure plasma jet arrays for surface processing
    Liu, Feng
    Zhang, Bo
    Fang, Zhi
    Wan, Meng
    Wan, Hui
    Ostrikov, Kostya
    PLASMA PROCESSES AND POLYMERS, 2018, 15 (01)
  • [47] Generation of Active Species in a Large Atmospheric-Pressure Plasma Jet
    O'Neill, Feidhlim T.
    Twomey, Barry
    Law, Victor John
    Milosavljevic, Vladimir
    Kong, Michael G.
    Anghel, Sorin Dan
    Dowling, Denis P.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) : 2994 - 3002
  • [48] DC Pulsed Atmospheric-Pressure Plasma Jet Image Information
    Dowling, D. P.
    O'Neill, F. T.
    Milosavljevic, V.
    Law, V. J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2326 - 2327
  • [49] A novel atmospheric-pressure air plasma jet for wound healing
    Guo, Peng
    Liu, Yang
    Li, Juan
    Zhang, Nan
    Zhou, Ming
    Li, Yi
    Zhao, Guozhu
    Wang, Ning
    Wang, Aiguo
    Wang, Yupeng
    Wang, Fujin
    Huang, Liping
    INTERNATIONAL WOUND JOURNAL, 2022, 19 (03) : 538 - 552
  • [50] Flexible reduced graphene oxide supercapacitor fabricated using a nitrogen dc- pulse atmospheric-pressure plasma jet
    Yang, Cheng-Han
    Kuok, Fei-Hong
    Liao, Chen-Yu
    Wan, Ting-Hao
    Chen, Chieh-Wen
    Hsu, Cheng-Che
    Cheng, I-Chun
    Chen, Jian-Zhang
    MATERIALS RESEARCH EXPRESS, 2017, 4 (02)