Characteristics of the MTx optical transmitter in Total Ionizing Dose

被引:0
|
作者
Gong, D. [1 ]
Hou, S. [2 ]
Juang, B. J. [2 ]
Li, J. -H. [2 ,3 ]
Liu, C. [1 ]
Liu, T. [1 ]
Qi, M. [4 ]
Ye, J. [1 ]
Zhang, Lei [4 ]
Zhang, Li [1 ]
Zhu, H. P. [5 ]
机构
[1] Southern Methodist Univ, Dallas, TX 75205 USA
[2] Acad Sinica, Acad Sin, Taipei 11529, Taiwan
[3] Natl Taiwan Univ, Taipei 10617, Taiwan
[4] Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China
[5] Inst Nucl Energy Res, Taoyuan 32546, Taiwan
关键词
LHC; Optoelectronic; Radiation hardness; ASIC;
D O I
10.1016/j.nima.2024.169378
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The dual-channel multi-mode 850 nm optical Miniature Transmitter (MTx) is developed for data transmission of the ATLAS LAr calorimeter readout at LHC. The MTx's are exposed to the radiation field of proton-proton collisions, therefore, the tolerance in Total Ionizing Dose (TID) is required. The TID effects in the MTx are investigated with X-rays and Co -60 gamma-rays for the active components of VCSEL diodes, and the customized Link-on-Chip laser driver (LOCld) developed in 0.25 mu m Silicon-on-Sapphire CMOS technology. The irradiation tests were conducted at various dose rates. The responses to TID are observed with degradation of laser currents at initial dose of 10 to 100 Gy(SiO2), and partial recovery with additional TID to a stable output about 90% of the original. The optical eye diagrams of irradiated samples show slightly increased jittering, and are suitable for the ATLAS requirement of 5 Gbps applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Total ionizing dose effects in bipolar devices and circuits
    Pease, RL
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (03) : 539 - 551
  • [22] A Bayesian Approach for Total Ionizing Dose Hardness Assurance
    Ladbury, R.
    Triggs, B.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (06) : 3004 - 3010
  • [23] System on Module Total Ionizing Dose Distribution Modeling
    Akhmetov, A. O.
    Boychenko, D. V.
    Bobrovskiy, D. V.
    Chumakov, A. I.
    Kalashnikov, O. A.
    Nikiforov, A. Y.
    Nekrasov, P. V.
    2014 29TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS PROCEEDINGS - MIEL 2014, 2014, : 329 - 331
  • [24] Total ionizing dose effects in bipolar and BiCMOS devices
    Chavez, RM
    Rax, BG
    Scheick, LZ
    Johnston, AH
    NSREC: 2005 IEEE Radiation Effects Data Workshop, Workshop Record, 2005, : 144 - 148
  • [25] Evaluation of Total Ionizing Dose Effects on Commercial FRAMs
    Slimani, Mariem
    Armani, Jean-Marc
    Gaillard, Remi
    2018 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW), 2018, : 140 - 144
  • [26] Total ionizing dose effects in MOS oxides and devices
    Oldham, TR
    McLean, FB
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (03) : 483 - 499
  • [27] Detailed total ionizing dose effects on LDMOS transistors
    Houadef, Ali
    Djezzar, Boualem
    MICROELECTRONICS RELIABILITY, 2022, 136
  • [28] Total Ionizing Dose Effect in LDMOS Oxides and Devices
    Borel, T.
    Furic, S.
    Leduc, E.
    Michez, A.
    Boch, J.
    Touboul, A.
    Azais, B.
    Danzeca, S.
    Dusseau, L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) : 1606 - 1611
  • [29] Total ionizing dose sensitivity of function blocks in FRAM
    Gu, Ke
    Liou, J. J.
    Li, Wei
    Liu, Yang
    Li, Ping
    MICROELECTRONICS RELIABILITY, 2015, 55 (06) : 873 - 878
  • [30] ATOMIC DISPLACEMENT AND TOTAL IONIZING DOSE DAMAGE IN SEMICONDUCTORS
    BRAUNIG, D
    WULF, F
    RADIATION PHYSICS AND CHEMISTRY, 1994, 43 (1-2) : 105 - 127