FedIOD: Federated Multi-Organ Segmentation From Partial Labels by Exploring Inter-Organ Dependency

被引:0
|
作者
Wan, Qin [1 ]
Yan, Zengqiang [1 ]
Yu, Li [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Biological systems; Federated learning; Decoding; Image segmentation; Feature extraction; Data models; Transformer; partial labeling; federated learning; self-attention; organ segmentation;
D O I
10.1109/JBHI.2024.3381844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-organ segmentation is a fundamental task and existing approaches usually rely on large-scale fully-labeled images for training. However, data privacy and incomplete/partial labels make those approaches struggle in practice. Federated learning is an emerging tool to address data privacy but federated learning with partial labels is under-explored. In this work, we explore generating full supervision by building and aggregating inter-organ dependency based on partial labels and propose a single-encoder-multi-decoder framework named FedIOD. To simulate the annotation process where each organ is labeled by referring to other closely-related organs, a transformer module is introduced and the learned self-attention matrices modeling pairwise inter-organ dependency are used to build pseudo full labels. By using those pseudo-full labels for regularization in each client, the shared encoder is trained to extract rich and complete organ-related features rather than being biased toward certain organs. Then, each decoder in FedIOD projects the shared organ-related features into a specific space trained by the corresponding partial labels. Experimental results based on five widely-used datasets, including LiTS, KiTS, MSD, BCTV, and ACDC, demonstrate the effectiveness of FedIOD, outperforming the state-of-the-art approaches under in-federation evaluation and achieving the second-best performance under out-of-federation evaluation for multi-organ segmentation from partial labels.
引用
收藏
页码:4105 / 4117
页数:13
相关论文
共 50 条
  • [21] Class-incremental learning for multi-organ segmentation
    Chen, Junyu
    Frey, Eric
    Du, Yong
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [22] Foveal Fully Convolutional Nets for Multi-Organ Segmentation
    Brosch, Tom
    Saalbach, Axel
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [23] Continual Learning for Abdominal Multi-organ and Tumor Segmentation
    Zhang, Yixiao
    Li, Xinyi
    Chen, Huimiao
    Yuille, Alan L.
    Liu, Yaoyao
    Zhou, Zongwei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 35 - 45
  • [24] SequentialSegNet: Combination with Sequential Feature for Multi-organ Segmentation
    Zhang, Yao
    Jiang, Xuan
    Zhong, Cheng
    Zhang, Yang
    Shi, Zhongchao
    Li, Zhensheng
    He, Zhiqiang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3947 - 3952
  • [25] Using probability maps for multi-organ automatic segmentation
    20142317793596
    (1) University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland; (2) Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland; (3) Medical Informatics, University Hospitals, University of Geneva, Geneva, Switzerland, 1600, (Springer Verlag):
  • [26] Ensemble Methods for Multi-Organ Segmentation in CT series
    Crespi, Leonardo
    Roncaglioni, Paolo
    Dei, Damiano
    Franzese, Ciro
    Lambri, Nicola
    Loiacono, Daniele
    Mancosu, Pietro
    Scorsetti, Marta
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 505 - 510
  • [27] Deep Learning Architectures and Techniques for Multi-organ Segmentation
    Ogrean, Valentin
    Dorobantiu, Alexandra
    Brad, Remus
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (01) : 28 - 35
  • [28] Multi-Organ Gland Segmentation Using Deep Learning
    Binder, Thomas
    Tantaoui, El Mehdi
    Pati, Pushpak
    Catena, Raul
    Set-Aghayan, Ago
    Gabrani, Maria
    FRONTIERS IN MEDICINE, 2019, 6
  • [29] Abdominal Multi-organ Segmentation Using CNN and Transformer
    Xin, Rui
    Wang, Lisheng
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 270 - 280
  • [30] Discriminative dictionary learning for abdominal multi-organ segmentation
    Tong, Tong
    Wolz, Robin
    Wang, Zehan
    Gao, Qinquan
    Misawa, Kazunari
    Fujiwara, Michitaka
    Mori, Kensaku
    Hajnal, Joseph V.
    Rueckert, Daniel
    MEDICAL IMAGE ANALYSIS, 2015, 23 (01) : 92 - 104