A generalized model for a triboelectric nanogenerator energy harvesting system

被引:9
|
作者
Sun, Bobo [1 ,2 ]
Guo, Xin [2 ,3 ]
Zhang, Yuyang [4 ,5 ]
Wang, Zhong Lin [2 ,3 ]
Shao, Jiajia [2 ,3 ]
机构
[1] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[4] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[5] Jilin Univ, Sch Mat Sci & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
TENG; Energy harvesting system; Generalized model; Dynamic contact problem; VIBRATION;
D O I
10.1016/j.nanoen.2024.109637
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A triboelectric nanogenerator (TENG) energy harvesting system involves at least three components: the mechanical source that inputs mechanical energy to drive TENGs, the TENG device itself as an energy converter, and an external electrical circuit that output the energy from TENGs. Multiple theoretical models have been developed for structural optimization design and maximum power output, yet there has been less emphasis on dynamic modelling of the entire energy harvesting system. This work presents attempts to establish such systemlevel models that encompass both mechanical and electrical systems. Special consideration is paid to the dynamic contact problem in this generalized model, since dynamic response of impacts can significantly affect the electric outputs. To address contact constraint problems, the penalty function method is utilized to handle nonsmoothness and discontinuity. Subsequently, this research specifies how to improve the maximum energy conversion efficiency, and suggest optimal executive strategies for maximizing the energy output through a thorough parametric study. The anticipated outcome is that the generalized model will not only guide optimization design and predict the dynamic characteristics of the energy harvesting system but also assess the potential feasibility of mechanical energy harvesting technology across diverse application domains.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR
    Tan, Dongguo
    Chi, Shimin
    Ou, Xu
    Zhou, Jiaxi
    Wang, Kai
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (09): : 2495 - 2510
  • [22] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 82
  • [23] Liquid-Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy
    Zhang, Ruotong
    Lin, Haisong
    Pan, Yi
    Li, Chang
    Yang, Zhenyu
    Tian, Jingxuan
    Shum, Ho Cheung
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
  • [24] Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy
    Kim, Min-Ki
    Kim, Myoung-Soo
    Jo, Sung-Eun
    Kim, Yong-Jun
    SMART MATERIALS AND STRUCTURES, 2016, 25 (12)
  • [25] Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ouyang, Ri
    Miao, Juan
    Wu, Tao
    Chen, Jiajia
    Sun, Chengfu
    Chu, Jing
    Chen, Dingming
    Li, Xin
    Xue, Hao
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [26] Multifunctional triboelectric nanogenerator for wind energy harvesting and mist catching
    Zhang, Fei
    Zheng, Lin
    Li, Hao
    Yu, Gao
    Wang, Shengbo
    Xing, Fangjing
    Wang, Zhong Lin
    Chen, Baodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [27] Highly Integrated Triboelectric Nanogenerator for Efficiently Harvesting Raindrop Energy
    Liu, Xia
    Yu, Aifang
    Qin, Aimao
    Zhai, Junyi
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (11)
  • [28] Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites
    Zheng, Yang
    Li, Jingjing
    Xu, Tiantian
    Cui, Hongzhi
    Li, Xiaoyi
    MATERIALS, 2023, 16 (15)
  • [29] Plant-based triboelectric nanogenerator for biomechanical energy harvesting
    Babu, Anjaly
    Rakesh, D.
    Supraja, P.
    Mishra, Siju
    Kumar, K. Uday
    Kumar, R. Rakesh
    Haranath, D.
    Mamidala, Estari
    Nagapuri, Raju
    RESULTS IN SURFACES AND INTERFACES, 2022, 8
  • [30] Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Jiang, Tao
    Zhang, Li Min
    Chen, Xiangyu
    Han, Chang Bao
    Tang, Wei
    Zhang, Chi
    Xu, Liang
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (12) : 12562 - 12572