Digital Surface Model Super-Resolution by Integrating High-Resolution Remote Sensing Imagery Using Generative Adversarial Networks

被引:1
|
作者
Sun, Guihou [1 ]
Chen, Yuehong [1 ]
Huang, Jiamei [1 ]
Ma, Qiang [2 ]
Ge, Yong [3 ]
机构
[1] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[2] China Inst Water Resources & Hydropower Res, Res Ctr Flood & Drought Disaster Reduct, Beijing 100038, Peoples R China
[3] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
关键词
Feature extraction; Remote sensing; Generators; Spatial resolution; Surface topography; Digital surface model (DSM); generative adversarial networks (GANs); remote sensing imagery; slope loss; super-resolution (SR); DEM; DSM;
D O I
10.1109/JSTARS.2024.3399544
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Digital surface model (DSM) is the fundamental data in various geoscience applications, such as city 3-D modeling and urban environment analysis. The freely available DSM often suffers from limited spatial resolution. Super-resolution (SR) is a promising technique to increase the spatial resolution of DSM. However, most existing SR models struggle to reconstruct spatial details, such as buildings, valleys, and ridges. This article proposes a novel DSM super-resolution (DSMSR) model that integrates high-resolution remote sensing imagery using generative adversarial networks. The generator in DSMSR contains three modules. The first DSM feature extraction module uses the residual-in-residual dense block to extract features from low-resolution DSM. The second multiscale attention feature extraction module employs the pyramid convolutional residual dense blocks to capture the spatial details of ground objects at multiple scales from remote sensing imagery. The third DSM reconstruction module uses a squeeze-and-excitation block to fuse the extracted features from low-resolution DSM and high-resolution remote sensing imagery for generating SR DSM. The discriminator of DSMSR uses the relativistic average discriminator for adversarial learning. The slope loss is further introduced to ensure the accurate representation of topographic features. We evaluate DSMSR on four different terrain regions in the U.K. to downscale the 30-m AW3D30 DSM to 5-m DSM. The experimental results indicate that DSMSR outperforms the traditional interpolation algorithms and four existing deep-learning-based SR models. The DSMSR restores more spatial detail of topographic features and generates more accurate image quality, elevation, and terrain metrics.
引用
收藏
页码:10636 / 10647
页数:12
相关论文
共 50 条
  • [21] Generative Adversarial Networks for Medical Image Super-resolution
    Zhao, Min
    Naderian, Amirkhashayar
    Sanei, Saeid
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [22] ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
    Wang, Xintao
    Yu, Ke
    Wu, Shixiang
    Gu, Jinjin
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    Loy, Chen Change
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 63 - 79
  • [23] Diffusion MRI Spatial Super-Resolution Using Generative Adversarial Networks
    Albay, Enes
    Demir, Ugur
    Unal, Gozde
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 155 - 163
  • [24] Super-resolution of magnetic resonance images using Generative Adversarial Networks
    Guerreiro, Joao
    Tomas, Pedro
    Garcia, Nuno
    Aidos, Helena
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [25] Generative adversarial networks using variational autoencoder discrimination for super-resolution
    Xu, Jian
    Ren, Xiangbo
    Niu, Lijiao
    Guo, Jiayao
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 624 - 629
  • [26] MedSRGAN: medical images super-resolution using generative adversarial networks
    Yuchong Gu
    Zitao Zeng
    Haibin Chen
    Jun Wei
    Yaqin Zhang
    Binghui Chen
    Yingqin Li
    Yujuan Qin
    Qing Xie
    Zhuoren Jiang
    Yao Lu
    Multimedia Tools and Applications, 2020, 79 : 21815 - 21840
  • [27] MedSRGAN: medical images super-resolution using generative adversarial networks
    Gu, Yuchong
    Zeng, Zitao
    Chen, Haibin
    Wei, Jun
    Zhang, Yaqin
    Chen, Binghui
    Li, Yingqin
    Qin, Yujuan
    Xie, Qing
    Jiang, Zhuoren
    Lu, Yao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21815 - 21840
  • [28] Real-World Super-Resolution using Generative Adversarial Networks
    Ren, Haoyu
    Kheradmand, Amin
    El-Khamy, Mostafa
    Wang, Shuangquan
    Bai, Dongwoon
    Lee, Jungwon
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1760 - 1768
  • [29] The Use of a Stable Super-Resolution Generative Adversarial Network (SSRGAN) on Remote Sensing Images
    Pang, Boyu
    Zhao, Siwei
    Liu, Yinnian
    REMOTE SENSING, 2023, 15 (20)
  • [30] Super-Resolution of Remote Sensing Images via a Dense Residual Generative Adversarial Network
    Ma, Wen
    Pan, Zongxu
    Yuan, Feng
    Lei, Bin
    REMOTE SENSING, 2019, 11 (21)