Resource Optimization for Semantic-Aware Networks With Task Offloading

被引:1
|
作者
Ji, Zelin [1 ]
Qin, Zhijin [2 ,3 ,4 ]
Tao, Xiaoming [2 ,3 ,4 ]
Han, Zhu [5 ,6 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100190, Peoples R China
[3] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[4] State Key Lab Space Network & Commun, Beijing 100084, Peoples R China
[5] Univ Houston, Elect & Comp Engn Dept, Houston, TX 77204 USA
[6] Univ Houston, Comp Sci Dept, Houston, TX 77204 USA
基金
中国国家自然科学基金; 日本科学技术振兴机构;
关键词
Deep reinforcement learning; edge computing; resource management; semantic communications; ALLOCATION;
D O I
10.1109/TWC.2024.3390407
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The limited capabilities of user equipment restrict the local implementation of computation-intensive applications. Edge computing, especially the edge intelligence system, enables local users to offload the computation tasks to the edge servers to reduce the computational energy consumption of user equipment and accelerate fast task execution. However, the limited bandwidth of upstream channels may increase the task transmission latency and affect the computation offloading performance. To overcome the challenge arising from scarce wireless communication resources, we propose a semantic-aware multi-modal task offloading system that facilitates the extraction and offloading of semantic task information to edge servers. To cope with the different tasks with multi-modal data, a unified quality of experience (QoE) criterion is designed. Furthermore, a proximal policy optimization-based multi-agent reinforcement learning algorithm (MAPPO) is proposed to coordinate the resource management for wireless communications and computation in a distributed and low computational complexity manner. Simulation results verify that the proposed MAPPO algorithm outperforms other reinforcement learning algorithms and fixed schemes in terms of task execution speed and the overall system QoE.
引用
收藏
页码:12284 / 12296
页数:13
相关论文
共 50 条
  • [31] Semantic-aware scene recognition
    Lopez-Cifuentes, Alejandro
    Escudero-Vinolo, Marcos
    Bescos, Jesus
    Garcia-Martin, Alvaro
    PATTERN RECOGNITION, 2020, 102
  • [32] A Survey of Energy Optimization Approaches for Computational Task Offloading and Resource Allocation in MEC Networks
    Yang, Jinming
    Shah, Awais Aziz
    Pezaros, Dimitrios
    ELECTRONICS, 2023, 12 (17)
  • [33] Semantic-aware multi-task learning for image aesthetic quality assessment
    Yan, Weiliang
    Li, Yuqing
    Yang, Huan
    Huang, Baoxiang
    Pan, Zhenkuan
    CONNECTION SCIENCE, 2022, 34 (01) : 2689 - 2713
  • [34] Joint Optimization of Task Offloading and Resource Allocation in Satellite-Assisted IoT Networks
    Shi, Jianfeng
    Chen, Xinyang
    Zhang, Yujie
    Chen, Xiao
    Pan, Chengsheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34337 - 34348
  • [35] Mx-TORU: Location-aware multi-hop task offloading and resource optimization protocol for connected vehicle networks
    Akyildiz, Oguzhan
    Okay, Feyza Yildirim
    Kok, Ibrahim
    Ozdemir, Suat
    COMPUTER NETWORKS, 2025, 259
  • [36] SAViP: Semantic-Aware Vulnerability Prediction for Binary Programs with Neural Networks
    Zhou, Xu
    Duan, Bingjie
    Wu, Xugang
    Wang, Pengfei
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [37] SemIndex: Semantic-Aware Inverted Index
    Chbeir, Richard
    Luo, Yi
    Tekli, Joe
    Yetongnon, Kokou
    Raymundo Ibanez, Carlos
    Traina, Agma J. M.
    Traina, Caetano, Jr.
    Al Assad, Marc
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS (ADBIS 2014), 2014, 8716 : 290 - 307
  • [38] Semantic-Aware Partitioning on RDF Graphs
    Xu, Qiang
    Wang, Xin
    Wang, Junhu
    Yang, Yajun
    Feng, Zhiyong
    WEB AND BIG DATA, APWEB-WAIM 2017, PT I, 2017, 10366 : 149 - 157
  • [39] Semantic-aware visual scene representation
    Mohammad Javad Parseh
    Mohammad Rahmanimanesh
    Parviz Keshavarzi
    Zohreh Azimifar
    International Journal of Multimedia Information Retrieval, 2022, 11 : 619 - 638
  • [40] Semantic-Aware Domain Generalized Segmentation
    Peng, Duo
    Lei, Yinjie
    Hayat, Munawar
    Guo, Yulan
    Li, Wen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2584 - 2595