An automatic classification framework for identifying type of plant leaf diseases using multi-scale feature fusion-based adaptive deep network

被引:6
|
作者
Nagachandrika, Bathula [1 ]
Prasath, R. [1 ]
Joe, I. R. Praveen [2 ]
机构
[1] KCG Coll Technol, Dept Comp Sci & Engn, Chennai 600097, Tamil Nadu, India
[2] Vellore Inst Technol, Comp Sci & Engn, Tiruvalam Rd, Vellore 632014, Tamil Nadu, India
关键词
Classification of Plant Leaf Diseases; Multi-scale Feature Fusion-based Adaptive; Deep Network; Visual Geometry Group 16; Variational Autoencoder; Visual Transformer; Adaptive Convolutional Neural Network with Attention Mechanism; Enhanced Gannet Optimization Algorithm; LEARNING APPROACH; IDENTIFICATION; ARCHITECTURE; ALGORITHM;
D O I
10.1016/j.bspc.2024.106316
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This method of identifying plant leaf disease generally involves a large team of experts with extensive knowledge of plant diseases, and it can be expensive, time-consuming, and subjective. Hence, a novel plant leaf disease classification framework is proposed to classify the plant diseases and then take preventive measures based on the classified outcomes. The plant leaf images are collected from traditional databases. The classification of leaf diseases is done with the support of the developed Multi-scale Feature Fusion-based Adaptive Deep Network (MFF-ADNet). In this developed MFF-ADNet, two processes are carried out such as feature extraction and classification. The collected images are given to the feature extraction phase, where the Visual Geometry Group (16) (VGG16), Variational Autoencoder (VAE), and Visual Transformer (ViT) network are used for extracting the features. The extracted features are fused and the resultant Multi-scale fused features are provided to the input of the classification process. Here, the Adaptive Convolutional Neural Network with Attention Mechanism (CNNAM) is utilized for classifying the plant leaf diseases and the parameters are optimized using the Enhanced Gannet Optimization Algorithm (EGOA) approach. From the results, the median value is obtained for a proposed method that is more than 7.18% of MAO-MFF-ADNet, 4.11% of TSO-MFF-ADNet, 8.03% of CO-MFF-ADNet and 4.07% of GOA-MFF-ADNet. Therefore, the experimental outcome of the developed plant leaf classification model is validated over various approaches to ensure the goodness of the developed scheme.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Classification of crop pests based on multi-scale feature fusion
    Wei, Depeng
    Chen, Jiqing
    Luo, Tian
    Long, Teng
    Wang, Huabin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [22] Fire Detection Method Based on Deep Residual Network and Multi-Scale Feature Fusion
    Xiao, Zehao
    Dong, Enzeng
    Du, Shengzhi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4810 - 4815
  • [23] Multi-Scale Feature Fusion and Distribution Similarity Network for Few-Shot Automatic Modulation Classification
    Tan, Haoyue
    Zhang, Zhenxi
    Li, Yu
    Shi, Xiaoran
    Zhou, Feng
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2890 - 2894
  • [24] Identification of tomato leaf diseases using convolutional neural network with multi-scale and feature reuse
    Li, Peng
    Zhong, Nan
    Dong, Wei
    Zhang, Meng
    Yang, Dantong
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2023, 16 (06) : 226 - 235
  • [25] Siamese Network Tracker Based on Multi-Scale Feature Fusion
    Zhao, Jiaxu
    Niu, Dapeng
    SYSTEMS, 2023, 11 (08):
  • [26] Fourier ptychography based on multi-scale feature fusion network
    Song Dong-han
    Wang Bin
    Zhu You-qiang
    Liu Xin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (11) : 1476 - 1487
  • [27] Multi-Scale Feature Fusion with Adaptive Weighting for Diabetic Retinopathy Severity Classification
    Fan, Runze
    Liu, Yuhong
    Zhang, Rongfen
    ELECTRONICS, 2021, 10 (12)
  • [28] Multi-Scale Deep Feature Fusion with Machine Learning Classifier for Birdsong Classification
    Li, Wei
    Lv, Danju
    Yu, Yueyun
    Zhang, Yan
    Gu, Lianglian
    Wang, Ziqian
    Zhu, Zhicheng
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [29] Space Plant Image Segmentation via Multi-Scale Deep Feature Fusion
    Cao, Jingkang
    Duan, Jiangyong
    Meng, Juan
    Li, Ye
    2018 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSSE 2018), 2018, : 12 - 22
  • [30] Multi-scale Convolutional Feature Fusion Network Based on Attention Mechanism for IoT Traffic Classification
    Niandong Liao
    Jiayu Guan
    International Journal of Computational Intelligence Systems, 17