Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide

被引:5
|
作者
Habarugira, Fabrice Nelly [1 ]
Yao, Ducheng [1 ]
Miao, Wei [2 ]
Chu, Chengcheng [1 ]
Chen, Zhong [1 ]
Mao, Shun [1 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[2] Baowu Water Technol Co Ltd, Res Inst, Shanghai 201999, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; H; 2; O; evolution; Sodium doping; Nitrogen defect; Metal -free catalyst; H2O2; PRODUCTION; REDUCTION; G-C3N4; PERFORMANCE; MECHANISM;
D O I
10.1016/j.cclet.2024.109886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic synthesis of hydrogen peroxide has gradually become a promising method for in -situ production of hydrogen peroxide, which relies on sustainable solar energy. However, the commonly used photocatalyst, i.e ., carbon nitride (CN), still suffers from the drawbacks of narrow light absorption range and fast charge recombination. Here, we report a facile method to introduce nitrogen defects into carbon nitride together with sodium ion. By adjusting the ratio of sodium dicyandiamide, the band gap of carbon nitride can be controlled, while the carrier separation and transfer ability of carbon nitride is improved. The modified CN with sodium doping and nitrogen defect (SD-CN) demonstrates outstanding H 2 O 2 production performance (H 2 O 2 yield rate of 297.2 mu mol L -1 h -1 ) under visible light irradiation, which is approximately 9.8 times higher than that of pristine CN. This work deepens the understanding of the coordinated effect of structural defect and element doping of carbon nitride on the photocatalytic H 2 O 2 production performance, and provides new insight into the design of photocatalytic system for efficient production of H 2 O 2 . (c) 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Promoted Photocatalytic Hydrogen Evolution by Molecular Ring-Substituting Doping and Regulation of Charge Carrier Migration in Graphitic Carbon Nitride
    Yan, Wei
    Yu, Yu
    Zou, Haihan
    Wang, Xiaofang
    Li, Pei
    Gao, Wenyu
    Wang, Junzhong
    Wu, Songmei
    Ding, Kejian
    SOLAR RRL, 2018, 2 (07):
  • [32] Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production
    Zhao, Shen
    Zhao, Xu
    Ouyang, Shuxin
    Zhu, Yongfa
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (06) : 1686 - 1695
  • [33] Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production
    Gao, Tengyang
    Zhao, Degui
    Yuan, Saisai
    Zheng, Ming
    Pu, Xianjuan
    Tang, Liang
    Lei, Zhendong
    CARBON ENERGY, 2024, 6 (11)
  • [34] Amidation crosslinking of polymeric carbon nitride for boosting photocatalytic hydrogen peroxide production
    Hu, Qiyu
    Dong, Yinjuan
    Ma, Kangwei
    Meng, Xiangyu
    Ding, Yong
    JOURNAL OF CATALYSIS, 2022, 413 : 321 - 330
  • [35] Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride
    Kim, Hyoung-il
    Choi, Yeoseon
    Hu, Shu
    Choi, Wonyong
    Kim, Jae-Hong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 229 : 121 - 129
  • [36] An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate
    Zhang, Yu
    Zhang, Ling
    Zeng, Di
    Wang, Wenjing
    Wang, Juxue
    Wang, Weimin
    Wang, Wenzhong
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (10) : 2690 - 2698
  • [37] Effect of alkali metal cation doping in graphitic carbon nitride towards photocatalytic generation of hydrogen peroxide under direct sunlight
    Haripriya, P.
    Anjana, T.
    Sreelakshmi, K.
    Madhu, Nikhil T.
    Anjana, M.
    Suneesh, P. V.
    Kumar, Darbha V. Ravi
    CATALYSIS COMMUNICATIONS, 2024, 187
  • [38] Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride
    Aleksandrzak M.
    Kijaczko M.
    Kukulka W.
    Baranowska D.
    Baca M.
    Zielinska B.
    Mijowska E.
    Beilstein Journal of Nanotechnology, 2021, 12 : 473 - 484
  • [39] Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride
    Aleksandrzak, Malgorzata
    Kijaczko, Michalina
    Kukulka, Wojciech
    Baranowska, Daria
    Baca, Martyna
    Zielinska, Beata
    Mijowska, Ewa
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2021, 12 : 473 - 484
  • [40] NaClO-induced sodium-doped cyano-rich graphitic carbon nitride nanosheets with nitrogen vacancies to boost photocatalytic hydrogen peroxide production
    Zhu, Yanlin
    Sun, Yanyan
    Khan, Javid
    Liu, Heng
    He, Guangling
    Liu, Xuetao
    Xiao, Jiamin
    Xie, Haijiao
    Han, Lei
    CHEMICAL ENGINEERING JOURNAL, 2022, 443