Artificial intelligence for small molecule anticancer drug discovery

被引:3
|
作者
Duo, Lihui [1 ]
Liu, Yu [1 ]
Ren, Jianfeng [1 ]
Tang, Bencan [1 ]
Hirst, Jonathan D. [2 ]
机构
[1] Univ Nottingham Ningbo China, Fac Sci & Engn, 199 Taikang East Rd, Ningbo 315100, Peoples R China
[2] Univ Nottingham Univ Pk, Sch Chem, Nottingham NG7 2RD, England
基金
中国国家自然科学基金;
关键词
Drug discovery; machine learning; artificial intelligence; cancer; small molecules; NEURAL-NETWORK; PREDICTION; IDENTIFICATION; DESCRIPTORS; INHIBITORS; CONSTANTS; DOCKING; IMPROVE; DESIGN;
D O I
10.1080/17460441.2024.2367014
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
IntroductionThe transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite the regulatory approval of several targeted molecules for clinical use, challenges such as low response rates and drug resistance still persist. Conventional drug discovery methods are costly and time-consuming, necessitating more efficient approaches. The rise of artificial intelligence (AI) and access to large-scale datasets have revolutionized the field of small-molecule cancer drug discovery. Machine learning (ML), particularly deep learning (DL) techniques, enables the rapid identification and development of novel anticancer agents by analyzing vast amounts of genomic, proteomic, and imaging data to uncover hidden patterns and relationships.Area coveredIn this review, the authors explore the important landmarks in the history of AI-driven drug discovery. They also highlight various applications in small-molecule cancer drug discovery, outline the challenges faced, and provide insights for future research.Expert opinionThe advent of big data has allowed AI to penetrate and enable innovations in almost every stage of medicine discovery, transforming the landscape of oncology research through the development of state-of-the-art algorithms and models. Despite challenges in data quality, model interpretability, and technical limitations, advancements promise breakthroughs in personalized and precision oncology, revolutionizing future cancer management.
引用
收藏
页码:933 / 948
页数:16
相关论文
共 50 条
  • [21] Artificial intelligence in drug discovery: A mirage or an oasis?
    Sethi, Aaftaab
    Rathi, Brijesh
    DRUG DISCOVERY TODAY, 2024, 29 (06) : 1 - 3
  • [22] Artificial Intelligence in Accelerating Drug Discovery and Development
    Tripathi, Anushree
    Misra, Krishna
    Dhanuka, Richa
    Singh, Jyoti Prakash
    Recent Patents on Biotechnology, 2023, 17 (01) : 9 - 23
  • [23] Artificial intelligence accelerate drug discovery.
    Xie, Weidong
    Cheng, Xing
    Ding, Zhengfang
    Deng, Riqiang
    Gu, Dawei
    CANCER RESEARCH, 2021, 81 (13)
  • [24] Artificial intelligence for natural product drug discovery
    Mullowney, Michael W.
    Duncan, Katherine R.
    Elsayed, Somayah S.
    Garg, Neha
    van der Hooft, Justin J. J.
    Martin, Nathaniel I.
    Meijer, David
    Terlouw, Barbara R.
    Biermann, Friederike
    Blin, Kai
    Durairaj, Janani
    Gonzalez, Marina Gorostiola
    Helfrich, Eric J. N.
    Huber, Florian
    Leopold-Messer, Stefan
    Rajan, Kohulan
    de Rond, Tristan
    van Santen, Jeffrey A.
    Sorokina, Maria
    Balunas, Marcy J.
    Beniddir, Mehdi A.
    van Bergeijk, Doris A.
    Carroll, Laura M.
    Clark, Chase M.
    Clevert, Djork-Arne
    Dejong, Chris A.
    Du, Chao
    Ferrinho, Scarlet
    Grisoni, Francesca
    Hofstetter, Albert
    Jespers, Willem
    Kalinina, Olga V.
    Kautsar, Satria A.
    Kim, Hyunwoo
    Leao, Tiago F.
    Masschelein, Joleen
    Rees, Evan R.
    Reher, Raphael
    Reker, Daniel
    Schwaller, Philippe
    Segler, Marwin
    Skinnider, Michael A.
    Walker, Allison S.
    Willighagen, Egon L.
    Zdrazil, Barbara
    Ziemert, Nadine
    Goss, Rebecca J. M.
    Guyomard, Pierre
    Volkamer, Andrea
    Gerwick, William H.
    NATURE REVIEWS DRUG DISCOVERY, 2023, 22 (11) : 895 - 916
  • [25] Insights into artificial intelligence utilisation in drug discovery
    Abou Hajal, Abdallah
    Al Meslamani, Ahmad Z.
    JOURNAL OF MEDICAL ECONOMICS, 2024, 27 (01) : 304 - 308
  • [26] The Future Is Now: Artificial Intelligence in Drug Discovery
    Bajorath, Juergen
    Kearnes, Steven
    Walters, W. Patrick
    Georg, Gunda I.
    Wang, Shaomeng
    JOURNAL OF MEDICINAL CHEMISTRY, 2019, 62 (11) : 5249 - 5249
  • [27] Editorial: Artificial intelligence in drug discovery and development
    Wei, Leyi
    Zou, Quan
    Zeng, Xiangxiang
    METHODS, 2024, 226 : 133 - 137
  • [28] A special issue on artificial intelligence for drug discovery
    Rodrigues, Tiago
    BIOORGANIC & MEDICINAL CHEMISTRY, 2022, 70
  • [29] Artificial intelligence in the early stages of drug discovery
    Cavasotto, Claudio N.
    Di Filippo, Juan I.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2021, 698
  • [30] ADVANCING DRUG DISCOVERY VIA ARTIFICIAL INTELLIGENCE
    Rachamsetty, Leela Sai Sree
    Panchumarthy, Ravi Sankar
    Gummadi, Haritha
    Valluri, Mounika
    Anitha, Alapati N. V. S. L.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, : 699 - 702