Van der Waals Epitaxially Grown Molecular Crystal Dielectric Sb2O3 for 2D Electronics

被引:3
|
作者
Ryu, Huije [1 ]
Kim, Hyunjun [1 ]
Jeong, Jae Hwan [1 ]
Kim, Byeong Chan [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
Lee, Gwan-Hyoung [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba 3050044, Japan
[3] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba 3050044, Japan
基金
新加坡国家研究基金会;
关键词
van der Waals epitaxy; molecular crystal dielectric; alpha-Sb2O3; grain boundary; 2D electronics; HIGH-QUALITY; GRAPHENE; TRANSISTORS; DEPOSITION;
D O I
10.1021/acsnano.4c01883
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) semiconducting materials have attracted significant interest as promising candidates for channel materials owing to their high mobility and gate tunability at atomic-layer thickness. However, the development of 2D electronics is impeded due to the difficulty in formation of high-quality dielectrics with a clean and nondestructive interface. Here, we report the direct van der Waals epitaxial growth of a molecular crystal dielectric, Sb2O3, on 2D materials by physical vapor deposition. The grown Sb2O3 nanosheets showed epitaxial relations of 0 and 180 degrees with the 2D template, maintaining high crystallinity and an ultrasharp vdW interface with the 2D materials. As a result, the Sb2O3 nanosheets exhibited a high breakdown field of 18.6 MV/cm for 2L Sb2O3 with a thickness of 1.3 nm and a very low leakage current of 2.47 x 10(-7) A/cm(2) for 3L Sb2O3 with a thickness of 1.96 nm. We also observed two types of grain boundaries (GBs) with misorientation angles of 0 and 60 degrees. The 0 degrees-GB with a well-stitched boundary showed higher electrical and thermal stabilities than those of the 60 degrees-GB with a disordered boundary. Our work demonstrates a method to epitaxially grow molecular crystal dielectrics on 2D materials without causing any damage, a requirement for high-performance 2D electronics.
引用
收藏
页码:13098 / 13105
页数:8
相关论文
共 50 条
  • [21] Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets
    Guo, Lingling
    Yan, Haoming
    Moore, Quentarius
    Buettner, Michael
    Song, Jinhui
    Li, Lin
    Araujo, Paulo T.
    Wang, Hung-Ta
    NANOSCALE, 2015, 7 (28) : 11915 - 11921
  • [22] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [23] Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures
    Gonzalez, R. I.
    Mella, J.
    Diaz, P.
    Allende, S.
    Vogel, E. E.
    Cardenas, C.
    Munoz, F.
    2D MATERIALS, 2019, 6 (04)
  • [24] Skyrmions in the Moire of van der Waals 2D Magnets
    Tong, Qingjun
    Liu, Fei
    Xiao, Jiang
    Yao, Wang
    NANO LETTERS, 2018, 18 (11) : 7194 - 7199
  • [25] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [26] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [27] Disorder in van der Waals heterostructures of 2D materials
    Rhodes, Daniel
    Chae, Sang Hoon
    Ribeiro-Palau, Rebeca
    Hone, James
    NATURE MATERIALS, 2019, 18 (06) : 541 - 549
  • [28] Energy dissipation in van der Waals 2D devices
    Ong, Zhun-Yong
    Bae, Myung-Ho
    2D MATERIALS, 2019, 6 (03):
  • [29] Van der Waals 2D Transition Metal Tellurides
    Su, Jianwei
    Liu, Kailang
    Wang, Fakun
    Jin, Bao
    Guo, Yabin
    Liu, Guiheng
    Li, Huiqiao
    Zhai, Tianyou
    ADVANCED MATERIALS INTERFACES, 2019, 6 (19):
  • [30] 2D Van der Waals Heterostructures for Chemical Sensing
    Hou, Hui-Lei
    Anichini, Cosimo
    Samori, Paolo
    Criado, Alejandro
    Prato, Maurizio
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (49)