Model-Based Reinforcement Learning for Cavity Filter Tuning

被引:0
|
作者
Nimara, Doumitrou Daniil [1 ]
Malek-Mohammadi, Mohammadreza [2 ]
Wei, Jieqiang [1 ]
Huang, Vincent [1 ]
Ogren, Petter [3 ]
机构
[1] Ericsson GAIA, Stockholm, Sweden
[2] Qualcomm, San Diego, CA USA
[3] KTH, Div Robot Percept & Learning, Stockholm, Sweden
来源
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211 | 2023年 / 211卷
关键词
Reinforcement Learning; Model Based Reinforcement Learning; Telecommunication;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ongoing development of telecommunication systems like 5G has led to an increase in demand of well calibrated base transceiver station (BTS) components. A pivotal component of every BTS is cavity filters, which provide a sharp frequency characteristic to select a particular band of interest and reject the rest. Unfortunately, their characteristics in combination with manufacturing tolerances make them difficult for mass production and often lead to costly manual post-production fine tuning. To address this, numerous approaches have been proposed to automate the tuning process. One particularly promising one, that has emerged in the past few years, is to use model free reinforcement learning (MFRL); however, the agents are not sample efficient. This poses a serious bottleneck, as utilising complex simulators or training with real filters is prohibitively time demanding. This work advocates for the usage of model based reinforcement learning (MBRL) and showcases how its utilisation can significantly decrease sample complexity, while maintaining similar levels of success rate. More specifically, we propose an improvement over a state-of-the-art (SoTA) MBRL algorithm, namely the Dreamer algorithm. This improvement can serve as a template for applications in other similar, high-dimensional non-image data problems. We carry experiments on two complex filter types, and show that our novel modification on the Dreamer architecture reduces sample complexity by a factor of 4 and 10, respectively. Our findings pioneer the usage of MBRL which paves the way for utilising more precise and accurate simulators which was previously prohibitively time demanding.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Weighted model estimation for offline model-based reinforcement learning
    Hishinuma, Toru
    Senda, Kei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [42] Latent Causal Dynamics Model for Model-Based Reinforcement Learning
    Hao, Zhifeng
    Zhu, Haipeng
    Chen, Wei
    Cai, Ruichu
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 219 - 230
  • [43] Model-based reinforcement learning with model error and its application
    Tajima, Yoshiyuki
    Onisawa, Takehisa
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1333 - 1336
  • [44] Model-based reinforcement learning: a computational model and an fMRI study
    Yoshida, W
    Ishii, S
    NEUROCOMPUTING, 2005, 63 : 253 - 269
  • [45] Reinforcement Twinning: From digital twins to model-based reinforcement learning
    Schena, Lorenzo
    Marques, Pedro A.
    Poletti, Romain
    Van den Berghe, Jan
    Mendez, Miguel A.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [46] Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal
    Agarwal, Alekh
    Kakade, Sham
    Yang, Lin F.
    CONFERENCE ON LEARNING THEORY, VOL 125, 2020, 125
  • [47] Model-based reinforcement learning under concurrent schedules of reinforcement in rodents
    Huh, Namjung
    Jo, Suhyun
    Kim, Hoseok
    Sul, Jung Hoon
    Jung, Min Whan
    LEARNING & MEMORY, 2009, 16 (05) : 315 - 323
  • [48] Reward Shaping for Model-Based Bayesian Reinforcement Learning
    Kim, Hyeoneun
    Lim, Woosang
    Lee, Kanghoon
    Noh, Yung-Kyun
    Kim, Kee-Eung
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3548 - 3555
  • [49] On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
    Zhang, Baohe
    Rajan, Raghu
    Pineda, Luis
    Lambert, Nathan
    Biedenkapp, Andre
    Chua, Kurtland
    Hutter, Frank
    Calandra, Roberto
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [50] Model-based Adversarial Meta-Reinforcement Learning
    Lin, Zichuan
    Thomas, Garrett
    Yang, Guangwen
    Ma, Tengyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33