Model-Based Reinforcement Learning for Cavity Filter Tuning

被引:0
|
作者
Nimara, Doumitrou Daniil [1 ]
Malek-Mohammadi, Mohammadreza [2 ]
Wei, Jieqiang [1 ]
Huang, Vincent [1 ]
Ogren, Petter [3 ]
机构
[1] Ericsson GAIA, Stockholm, Sweden
[2] Qualcomm, San Diego, CA USA
[3] KTH, Div Robot Percept & Learning, Stockholm, Sweden
关键词
Reinforcement Learning; Model Based Reinforcement Learning; Telecommunication;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ongoing development of telecommunication systems like 5G has led to an increase in demand of well calibrated base transceiver station (BTS) components. A pivotal component of every BTS is cavity filters, which provide a sharp frequency characteristic to select a particular band of interest and reject the rest. Unfortunately, their characteristics in combination with manufacturing tolerances make them difficult for mass production and often lead to costly manual post-production fine tuning. To address this, numerous approaches have been proposed to automate the tuning process. One particularly promising one, that has emerged in the past few years, is to use model free reinforcement learning (MFRL); however, the agents are not sample efficient. This poses a serious bottleneck, as utilising complex simulators or training with real filters is prohibitively time demanding. This work advocates for the usage of model based reinforcement learning (MBRL) and showcases how its utilisation can significantly decrease sample complexity, while maintaining similar levels of success rate. More specifically, we propose an improvement over a state-of-the-art (SoTA) MBRL algorithm, namely the Dreamer algorithm. This improvement can serve as a template for applications in other similar, high-dimensional non-image data problems. We carry experiments on two complex filter types, and show that our novel modification on the Dreamer architecture reduces sample complexity by a factor of 4 and 10, respectively. Our findings pioneer the usage of MBRL which paves the way for utilising more precise and accurate simulators which was previously prohibitively time demanding.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reinforcement Learning with Imitation for Cavity Filter Tuning
    Lindstahl, Simon
    Lan, Xiaoyu
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1335 - 1340
  • [2] A Model-Based Reinforcement Learning Approach for Robust PID Tuning
    Jesawada, Hozefa
    Yerudkar, Amol
    Del Vecchio, Carmen
    Singh, Navdeep
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1466 - 1471
  • [3] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [4] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [5] Nonparametric model-based reinforcement learning
    Atkeson, CG
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [6] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [7] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [8] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [9] Learning to Paint With Model-based Deep Reinforcement Learning
    Huang, Zhewei
    Heng, Wen
    Zhou, Shuchang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8708 - 8717
  • [10] Incremental model-based reinforcement learning with model constraint
    Yang, Zhiyou
    Fu, Mingsheng
    Qu, Hong
    Li, Fan
    Shi, Shuqing
    Hu, Wang
    NEURAL NETWORKS, 2025, 185