A stacked deep multi-kernel learning framework for blast induced flyrock prediction

被引:2
|
作者
Zhang, Ruixuan [1 ]
Li, Yuefeng [2 ]
Gui, Yilin [1 ,3 ,4 ]
Armaghani, Danial Jahed [5 ]
Yari, Mojtaba [6 ]
机构
[1] Queensland Univ Technol, Sch Civil & Environm Engn, Gardens Point, Qld 4000, Australia
[2] Queensland Univ Technol, Sch Comp Sci, Gardens Point, Qld 4000, Australia
[3] Queensland Univ Technol, Ctr Mat Sci, Gardens Point, Qld 4000, Australia
[4] Queensland Univ Technol, Ctr Sustainable Engn Construction Mat, Gardens Point, Qld 4000, Australia
[5] Univ Technol Sydney, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
[6] Malayer Univ, Fac Engn, Dept Min Engn, Malayer 6571995863, Iran
关键词
Deep learning; Stacked-representation learning; Multi -kernel learning; Multi -feature fusion; Gradient boosting; Flyrock prediction; SUPPORT VECTOR MACHINE; GROUND VIBRATION; MODEL; OPTIMIZATION; PARAMETERS; ALGORITHMS; DISTANCE;
D O I
10.1016/j.ijrmms.2024.105741
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Blasting operations are widely and frequently used for rock excavation in Civil and Mining constructions. Flyrock is one of the most important issues induced by blasting operations in open pit mines, and therefore needs to be well predicted in order to identify the safety zone to prevent the potential injuries. For this purpose, 234 sets of blasting data were collected from Sungun Copper Mine site, and a stacked deep multi -kernel learning (SD-MKL) framework was proposed to estimate the blast induced flyrock with confidence accuracy. The proposed model uses the stacking-based representation learning framework (S-RL) to achieve deep learning on small-scale training sets. A multi -kernel learning model (MKL) is used as the base module of S-RL framework, which uses a multi -feature fusion strategy to generate multiple kernels with different kernel length in order to reduce the effort in tuning hyperparameters. In addition, this study further enhanced the predictive capability of SD-MKL by introducing the boosting method into the S-RL framework and hence proposed a boosted SD-MKL model. For comparison purpose, several existing machine learning models were implemented, i.e., kernel ridge regression (KRR), support vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), ensemble deep random vector functional link (edRVFL), SD-KRR and SD-SVM. Our experimental results showed that the proposed boosted SD-MKL achieved the best overall performance, with the lowest RMSE of 0.21/1.73, MAE of 0.08/0.78, and the highest VAF of 99.98/99.24.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multi-kernel learning for multivariate performance measures optimization
    Fan Lin
    Jingbin Wang
    Nian Zhang
    Jianbing Xiahou
    Nancy McDonald
    Neural Computing and Applications, 2017, 28 : 2075 - 2087
  • [42] An innovative multi-kernel learning algorithm for hyperspectral classification
    Li, Fei
    Lu, Huchuan
    Zhang, Pingping
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 79
  • [43] Evolutionary Learning of Regularization Networks with Multi-kernel Units
    Vidnerova, Petra
    Neruda, Roman
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 538 - 546
  • [44] ONLINE MULTI-KERNEL LEARNING WITH ORTHOGONAL RANDOM FEATURES
    Shen, Yanning
    Chen, Tianyi
    Giannakis, Georgios B.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6289 - 6293
  • [45] Lithofacies identification using support vector machine based on local deep multi-kernel learning
    Liu, Xing-Ye
    Zhou, Lin
    Chen, Xiao-Hong
    Li, Jing-Ye
    PETROLEUM SCIENCE, 2020, 17 (04) : 954 - 966
  • [46] Collaborative and geometric multi-kernel learning for multi-class classification
    Wang, Zhe
    Zhu, Zonghai
    Li, Dongdong
    PATTERN RECOGNITION, 2020, 99
  • [47] Improved Multi-kernel LS-SVR for Time Series Online Prediction with Incremental Learning
    Guo, Yangming
    Wang, Xiangtao
    Zheng, Yafei
    Liu, Chong
    2014 IEEE CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), 2014,
  • [48] A Unified Framework for Discrete Multi-kernel k-means with Kernel Diversity Regularization
    Lu, Yihang
    Zheng, Xuan
    Wang, Rong
    Nie, Feiping
    Li, Xuelong
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4934 - 4940
  • [49] Multi-kernel maximum entropy discrimination for multi-view learning
    Chao, Guoqing
    Sun, Shiliang
    INTELLIGENT DATA ANALYSIS, 2016, 20 (03) : 481 - 493
  • [50] DISCRETE MULTI-KERNEL K-MEANS WITH DIVERSE AND OPTIMAL KERNEL LEARNING
    Lu, Yihang
    Lu, Jitao
    Wang, Rong
    Nie, Feiping
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4153 - 4157