dSalmon: High-Speed Anomaly Detection for Evolving Multivariate Data Streams

被引:0
|
作者
Hartl, Alexander [1 ]
Iglesias, Felix [1 ]
Zseby, Tanja [1 ]
机构
[1] TU Wien Inst Telecommun, A-1040 Vienna, Austria
来源
PERFORMANCE EVALUATION METHODOLOGIES AND TOOLS, VALUETOOLS 2023 | 2024年 / 539卷
关键词
Outlier detection; Data streams; Unsupervised learning; !text type='Python']Python[!/text; C plus;
D O I
10.1007/978-3-031-48885-6_10
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce dSalmon, a highly efficient framework for outlier detection on streaming data. dSalmon can be used with both Python and C++, meeting the requirements of modern data science research. It provides an intuitive interface and has almost no package dependencies. dSalmon implements main stream outlier detection approaches from literature. By using pure C++ in its core and making the most of available parallelism, data is analyzed with superior processing speed. We describe design decisions and outline the software architecture of dSalmon. Additionally, we perform thorough evaluations on benchmarking datasets to measure execution time, memory requirements and energy consumption when performing outlier detection. Experiments show that dSalmon requires substantially less resources and in most cases is able to process datasets between one and three orders of magnitude faster than established Python implementations.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 50 条
  • [31] Detection and classification of changes in evolving data streams
    Gaber, Mohamed Medhat
    Yu, Philip S.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2006, 5 (04) : 659 - 670
  • [32] Feature Drift Detection in Evolving Data Streams
    Zhao, Di
    Koh, Yun Sing
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2020, PT II, 2020, 12392 : 335 - 349
  • [33] Outlier and anomaly pattern detection on data streams
    Cheong Hee Park
    The Journal of Supercomputing, 2019, 75 : 6118 - 6128
  • [34] Anomaly Detection on Data Streams for Smart Agriculture
    Moso, Juliet Chebet
    Cormier, Stephane
    de Runz, Cyril
    Fouchal, Hacene
    Wandeto, John Mwangi
    AGRICULTURE-BASEL, 2021, 11 (11):
  • [35] OHODIN - Online Anomaly Detection for Data Streams
    Gruhl, Christian
    Tomforde, Sven
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2021), 2021, : 193 - 197
  • [36] Review of Anomaly Detection Algorithms for Data Streams
    Lu, Tianyuan
    Wang, Lei
    Zhao, Xiaoyong
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [37] Adaptive Anomaly Detection on Network Data Streams
    Riddle-Workman, Elizabeth
    Evangelou, Marina
    Adams, Niall M.
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2018, : 19 - 24
  • [38] Outlier and anomaly pattern detection on data streams
    Park, Cheong Hee
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (09): : 6118 - 6128
  • [39] Evolving anomaly detection for network streaming data
    Wang Xiaolan
    Ahmed, Md Manjur
    Husen, Mohd Nizam
    Qian, Zhao
    Belhaouari, Samir Brahim
    INFORMATION SCIENCES, 2022, 608 : 757 - 777
  • [40] Tracking triadic cardinality distributions for burst detection in high-speed graph streams
    Junzhou Zhao
    Pinghui Wang
    Zhouguo Chen
    Jianwei Ding
    John C. S. Lui
    Don Towsley
    Xiaohong Guan
    Knowledge and Information Systems, 2021, 63 : 939 - 969