On the generalized Hamming weights of hyperbolic codes

被引:2
|
作者
Camps-Moreno, Eduardo [1 ]
Garcia-Marco, Ignacio [2 ]
Lopez, Hiram H. [1 ]
Marquez-Corbella, Irene [2 ]
Martinez-Moro, Edgar [3 ]
Sarmiento, Eliseo [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ La Laguna, Inst Matemat & Aplicac IMAULL, Dept Matemat Estadist & IO, Tenerife, Spain
[3] Univ Valladolid, Inst Math, Valladolid, Spain
[4] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City, DF, Mexico
关键词
Reed-Muller codes; evaluation codes; hyperbolic codes; generalized Hamming weights; footprint;
D O I
10.1142/S0219498825500628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hyperbolic code is an evaluation code that improves a Reed-Muller code because the dimension increases while the minimum distance is not penalized. We give necessary and sufficient conditions, based on the basic parameters of the Reed-Muller code, to determine whether a Reed-Muller code coincides with a hyperbolic code. Given a hyperbolic code C, we find the largest Reed-Muller code contained in C and the smallest Reed-Muller code containing C. We then prove that similar to Reed-Muller and affine Cartesian codes, the rth generalized Hamming weight and the rth footprint of the hyperbolic code coincide. Unlike for Reed-Muller and affine Cartesian codes, determining the rth footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the rth footprint of a hyperbolic code that, sometimes, are sharp.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] GENERALIZED HAMMING WEIGHTS OF LINEAR CODES FROM CRYPTOGRAPHIC FUNCTIONS
    Li, Kangquan
    Chen, Hao
    Qu, Longjiang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 859 - 877
  • [42] The second and third generalized Hamming weights of algebraic geometry codes
    Ramirez-Alzola, D
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2003, 2643 : 158 - 168
  • [43] Free Resolutions and Generalized Hamming Weights of Binary Linear Codes
    Garcia-Marco, Ignacio
    Marquez-Corbella, Irene
    Martinez-Moro, Edgar
    Pitones, Yuriko
    MATHEMATICS, 2022, 10 (12)
  • [44] On generalized Hamming weights of codes constructed on affine algebraic varieties
    Shibuya, T
    Mizutani, J
    Sakaniwa, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (10) : 1979 - 1989
  • [45] About the generalized Hamming weights of matrix-product codes
    San-Jose, Rodrigo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (04):
  • [46] A note on the generalized Hamming weights of Reed-Muller codes
    Beelen, Peter
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (03) : 233 - 242
  • [47] Notes on generalized Hamming weights of some classes of binary codes
    Liu, Zihui
    Wang, Jinliang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (04): : 645 - 657
  • [48] New Lower Bounds on the Generalized Hamming Weights of AG Codes
    Bras-Amoros, Maria
    Lee, Kwankyu
    Vico-Oton, Albert
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (10) : 5930 - 5937
  • [49] GENERALIZED HAMMING WEIGHTS OF TORIC CODES OVER HYPERSIMPLICES AND SQUAREFREE AFFINE EVALUATION CODES
    Patanker, Nupur
    Singh, Sanjay Kumar
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (03) : 626 - 643
  • [50] Some bounds for the relative generalized Hamming weights of some evaluation codes
    Gonzalez Sarabia, Manuel
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (02): : 261 - 270