On the generalized Hamming weights of hyperbolic codes

被引:2
|
作者
Camps-Moreno, Eduardo [1 ]
Garcia-Marco, Ignacio [2 ]
Lopez, Hiram H. [1 ]
Marquez-Corbella, Irene [2 ]
Martinez-Moro, Edgar [3 ]
Sarmiento, Eliseo [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ La Laguna, Inst Matemat & Aplicac IMAULL, Dept Matemat Estadist & IO, Tenerife, Spain
[3] Univ Valladolid, Inst Math, Valladolid, Spain
[4] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City, DF, Mexico
关键词
Reed-Muller codes; evaluation codes; hyperbolic codes; generalized Hamming weights; footprint;
D O I
10.1142/S0219498825500628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hyperbolic code is an evaluation code that improves a Reed-Muller code because the dimension increases while the minimum distance is not penalized. We give necessary and sufficient conditions, based on the basic parameters of the Reed-Muller code, to determine whether a Reed-Muller code coincides with a hyperbolic code. Given a hyperbolic code C, we find the largest Reed-Muller code contained in C and the smallest Reed-Muller code containing C. We then prove that similar to Reed-Muller and affine Cartesian codes, the rth generalized Hamming weight and the rth footprint of the hyperbolic code coincide. Unlike for Reed-Muller and affine Cartesian codes, determining the rth footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the rth footprint of a hyperbolic code that, sometimes, are sharp.
引用
收藏
页数:18
相关论文
共 50 条