Degradation of ciprofloxacin by magnetic CuS/MnFe2O4 catalysts efficiently activated peroxymonosulfate

被引:6
|
作者
Feng, Li [1 ]
Liu, Yanyan [1 ]
Shan, Yuxue [1 ]
Yang, Shuao [1 ]
Wu, Lanting [1 ]
Shi, Tianyu [1 ]
机构
[1] Wuhan Univ Technol, Sch Safety Sci & Emergency Management, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic catalyst; Peroxymonosulfate; Redox cycle; Degradation; Ciprofloxacin; HETEROGENEOUS CATALYST; PERSULFATE ACTIVATION; ORGANIC CONTAMINANTS; MFE2O4; M; PERFORMANCE; OXIDATION; REMOVAL; MN; CO; NANOCOMPOSITE;
D O I
10.1016/j.jtice.2024.105533
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: Ciprofloxacin (CIP) is a broad-spectrum antibacterial agent. Its extensive use has led to high frequency detection in various water environments, resulting in environmental pollution. The peroxymonosulfatebased advanced oxidation processes (PMS-AOPs) is a promising method for the removal of organic pollutants due to its low cost and high redox potential. Methods: Magnetic CuS/MnFe2O4 composites were successfully prepared using hydrothermal and solvothermal methods. The catalysts were characterized by XRD, SEM, TEM and VSM, and the degradation efficiency and mechanism of CIP by CuS/MnFe2O4/PMS system were investigated. Significant findings: The results demonstrated that the magnetic CuS/MnFe2O4 composites exhibited superior catalytic performance than pure CuS and pure MnFe2O4. Under optimized degradation conditions (CuS/ MnFe2O4=15 mg/L, PMS=1 mM, CIP=20 mg/L, initial pH = 5.89, T = 25 degree celsius), 98.9 % of CIP was degraded within 60 min. Metal ions (Cu, Mn, Fe) on the catalysts surface played an important role in activating PMS, whereas low-sulfur species (S2- and S & nacute;-) promoted the Cu(II)/Cu(I), Mn(III)/Mn(II) and Fe(III)/Fe(II) cycles to accelerate the generation of free radicals. Additionally, SO center dot-4 and 1O2 were considered to be important reactive species in the CuS/MnFe2O4/PMS system. Finally, the magnetic CuS/MnFe2O4 composites exhibited excellent recyclability and universality.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid
    Le Thi Thao
    To Van Nguyen
    Van Quy Nguyen
    Ngoc Man Phan
    Kim, Ki Jae
    Nguyen Nhat Huy
    Nguyen Trung Dung
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 124 : 379 - 396
  • [12] Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid
    Le Thi Thao
    To Van Nguyen
    Van Quy Nguyen
    Ngoc Man Phan
    Ki Jae Kim
    Nguyen Nhat Huy
    Nguyen Trung Dung
    Journal of Environmental Sciences, 2023, (02) : 379 - 396
  • [13] Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: Efficiency and mechanism
    Xu, Lv Si
    Sun, Xiao Bo
    Hong, Jun-ming
    Zhang, Qian
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 153
  • [14] Degradation of OG with Peroxymonosulfate Activated by a MnFe2O4-graphene Hybrid
    Xia W.-J.
    Liu F.
    Hao S.-B.
    Huang T.-Y.
    Wang Z.-M.
    Chen J.-B.
    Huanjing Kexue/Environmental Science, 2018, 39 (05): : 2202 - 2210
  • [15] Magnetic MnFe2O4/ZIF-67 nanocomposites with high activation of peroxymonosulfate for the degradation of tetracycline hydrochloride in wastewater
    Lu, Si
    You, Sasha
    Hu, Junhao
    Li, Xiang
    Li, Ling
    RSC ADVANCES, 2024, 14 (11) : 7528 - 7539
  • [16] Activation of Peroxymonosulfate by Magnetic MnFe2O4/MWCNT Toward Rhodamine B Degradation: Efficiency, Mechanism and Influencing Factors
    Zheng, Lijia
    Cao, Shoutao
    Tang, Meng
    Ge, Ming
    WATER AIR AND SOIL POLLUTION, 2025, 236 (01):
  • [17] Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode
    Zhang, Mingming
    Gong, Yan
    Ma, Ning
    Zhao, Xu
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [18] Regeneration of granular activated carbon adsorbent by peroxymonosulfate activation with MnO2/MnFe2O4
    Liu, Juntong
    Sun, Ruoyu
    Wu, Yinsu
    Xing, Shengtao
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [19] Magnetic properties of MnFe2O4 nanoparticles
    Balaji, G
    Gajbhiye, NS
    Wilde, G
    Weissmüller, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 242 : 617 - 620
  • [20] Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms
    Chen, Xue-Li
    Li, Haitao
    Lai, LanHai
    Zhang, YueXing
    Chen, Yonglin
    Li, XiaoKang
    Liu, Bin
    Wang, HuiJuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 308